Skip to main content
Log in

Nanoparticles in wastewater treatment plants: a novel acute toxicity test for ciliates and its implementation in risk assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanomaterial (NM) release into wastewater treatment plants (WWTPs) is inevitable due to increased production and application throughout past decades and in the future. Concern arose about environmental risks and impact on activated sludge. Environmental risk assessment (ERA) for NMs according to established guidelines is considered not suitable, because NMs exhibit unique characteristics. For hazard identification on activated sludge, standard test organisms for aquatic toxicity testing are not meaningful. In this study, we developed an acute toxicity test for ciliates (Paramecium tetraurelia) as representatives of the important functional group of microbial predators and filter feeders. We chose silver nanoparticles (nAg) exemplarily for ion releasing nanoparticles and regarded toxicity by ions as well. Our results indicate that ions are more toxic (EC50 0.73 mg/L) than nanoparticles themselves (EC50 2.15 mg/L). However, nAg must be considered as a source of ions and requires size, surface coating, and compartment-specific ERA. We strived to develop such ERA based on our results, modeled environmental concentration data from literature, and surface area concentrations. Results indicated a probable risk toward activated sludge. This likely has effects on effluent water quality. We conclude that carefully modeled environmental concentrations are vital for more exact ERA for nAg and other NMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott LC, Maynard AD (2010) Exposure assessment approaches for engineered nanomaterials. Risk Anal 30(11):1634–1644

    Article  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56(5):300–306

    Article  CAS  Google Scholar 

  • Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Article  Google Scholar 

  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292

    Article  CAS  Google Scholar 

  • Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol Article ID 293784, 9 pages

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409

    Article  CAS  Google Scholar 

  • Bouin P (1897) Phenomenes Cytologique anoramoux dans.1 Histogenes. Nancy

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30(3):504–520

    Article  CAS  Google Scholar 

  • Consumer Products Inventory (2009) in The Project on Emerging Nanotechnologies. Woodrow Wilson International Center for Scholars

  • Curds CR (1982) The ecology and role of protozoa in aerobic sewage treatment processes. Annu Rev Microbiol 36(1):27–28

    Article  CAS  Google Scholar 

  • European-comission (2012) Second Regulatory Review on Nanomaterials. Communication from the comission to the European parliament, the council and the European economic and social committee COM (2012) 572 final

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425

    Article  CAS  Google Scholar 

  • Jeong E, Chae SR, Kang ST, Shin HS (2012) Effects of silver nanoparticles on biological nitrogen removal processes. Water Sci Technol 65(7):1298–1303

    Article  CAS  Google Scholar 

  • Kaneshiro ES, Beischel LS, Merkel SJ, Rhoads DE (1979) The fatty acid composition of Paramecium aurelia cells and cilia: changes with culture age. J Protozool 26(1):147–158

    Article  CAS  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    Article  CAS  Google Scholar 

  • Lee YJ, Kim J, Oh J, Bae S, Lee S, Hong IS, Kim SH (2012) Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environ Toxicol Chem 31(1):155–159

    Article  CAS  Google Scholar 

  • Li K, Chen Y, Zhang W, Pu Z, Jiang L, Chen Y (2012) Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium. Chem Res Toxicol 25(81):675–681

    Google Scholar 

  • Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386

    Article  CAS  Google Scholar 

  • Liang Z, Das A, Hu Z (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44(18):5432–5438

    Article  CAS  Google Scholar 

  • Lin Q, Sun Z (2011) Study on optical properties of aggregated ultra-small metal nanoparticles. Optik - Int J Light Electron Opt 122(12):1031–1036

    Article  CAS  Google Scholar 

  • Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175

    Article  CAS  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913

    Article  CAS  Google Scholar 

  • Madoni P (1994) A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Res 28(1):67–75

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12(5):1531–1551

    Article  CAS  Google Scholar 

  • Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164–1183

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AI, Quigg A, Santschi PH, Sigg R (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97(49):12974–12983

    Article  CAS  Google Scholar 

  • Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218(27):4219–4225

    Article  CAS  Google Scholar 

  • Radniecki TS, Stankus DP, Neigh A, Nason JA, Semprini L (2011) Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 85(1):43–49

    Article  CAS  Google Scholar 

  • Soldo AT, Van Wagtendonk W (1969) Nutrition of Paramecium aurella, stock 299. J Protozool 16(3):500–506

    Article  CAS  Google Scholar 

  • Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, Mulfinger L (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84(2):322–325

    Article  CAS  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654

    Article  CAS  Google Scholar 

  • Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances(2003); Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances; Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, Part II; European Commission; Joint Research Centre; Institute for Health and Consumer Protection; European Chemicals Bureau (ECB)

  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312

    Article  CAS  Google Scholar 

  • Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017

    Article  CAS  Google Scholar 

  • Wang Z, Chen J, Li X, Shao J, Peijnenburg WJGM (2012) Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Environ Toxicol Chem 31(10):2408–2413

    Article  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silvernanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Klaus Tschira Stiftung for financiation; Dr. Eva-Maria Ladenburg (University of Konstanz) for kind donation of axenic cell culture inoculums; Claus Ripl, Dr. André Lerch, and Jana Brückner (TU Dresden, Institute of Water Supply) for providing the Zetasizer; Dr. Thomas Klinger (TU Dresden, Tharandt) for ICP-OES analyses, Dr. Michael Stintz and Petra Fiala (TU Dresden, MVT) for SEM analyses, Dr. Holger Stephan and Katrin Taetz (Helmholtz Center Dresden-Rossendorf) for NTA analyses; and Henriette Leps for basic work on test design.

Funding sources

This work was funded by Klaus Tschira Stiftung gGmbH

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Burkart.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The SI section contains figures on experimental setup and on regression analysis of mass concentration and sac with ion release; equations for particle size determination according to UV-vis results; tables on zeta potential and particle size results, and literature data on ECx of NM-300K transformed to sac and ERA values for freshwater. (DOCX 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkart, C., von Tümpling, W., Berendonk, T. et al. Nanoparticles in wastewater treatment plants: a novel acute toxicity test for ciliates and its implementation in risk assessment. Environ Sci Pollut Res 22, 7485–7494 (2015). https://doi.org/10.1007/s11356-014-4057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4057-3

Keywords

Navigation