Skip to main content
Log in

Construction and analysis of an intergeneric fusion from Pigmentiphaga sp. strain AAP-1 and Pseudomonas sp. CTN-4 for degrading acetamiprid and chlorothalonil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pseudomonas sp. CTN-4 degrades chlorothalonil (CTN) but not acetamiprid (AAP), and Pigmentiphaga sp. strain AAP-1 degrades AAP but not CTN. A functional strain, AC, was constructed through protoplast fusion of two parental strains (Pseudomonas sp. CTN-4 and Pigmentiphaga sp. strain AAP-1) in order to simultaneously improve the degradation efficiency of AAP and CTN. Fusant-AC with eight transfers on plates containing two antibiotics and CTN was obtained. For the purpose of identifying and confirming the genetic relationship between fusant-AC and its parents, randomly amplified polymorphic DNA (RAPD), scanning electron microscopy (SEM), and 16S ribosomal DNA (rDNA) analysis were performed. In toto, RAPD fingerprint analysis produced 194 clear bands with 9 primers, which not only had bands in common with strains CTN-4 and AAP-1, but also had its own novel fusant-specific bands. The genetic similarity indices between fusant-AC and parental strains CTN-4 and AAP-1 were 0.40 and 0.69, respectively. The result of SEM indicated that the cell morphology of fusant-AC differed from both its parents. The fusant strain AC possesses a strong capability for AAP and CTN degradation. At AAP concentration (50–300 mg L−1), the degradation was achieved within 5 h. At the initial dose of 50 and 100 mg L−1 CTN, the percentages reached 96 and 91 % over a 36-h incubation period. The present study indicates that the protoplast-fusion technique may have possible applications in environmental pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajithkumar B, Ajithkumar VP, Iriye R (2003) Degradation of 4-amylphenol and 4-hexylphenol by a new activated sludge isolate of Pseudomonas veronii and proposal for a new subspecies status. Res Microbiol 154(1):17–23

    Article  CAS  Google Scholar 

  • Bidlan R, Manonmani H (2002) Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 38(1):49–56

    Article  CAS  Google Scholar 

  • Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61(8):742–748

    Article  CAS  Google Scholar 

  • Caux PY, Kent R, Fan G, Stephenson G (1996) Environmental fate and effects of chlorothalonil: a Canadian perspective. Crit Rev Env Sci Tec 26(1):45–93

    Article  CAS  Google Scholar 

  • Chakraborty U, Sikdar SR (2008) Production and characterization of somatic hybrids raised through protoplast fusion between edible mushroom strains Volvariella volvacea and Pleurotus florida. World J Microb Biot 24(8):1481–1492

    Article  Google Scholar 

  • Chen T, Dai YJ, Ding JF, Yuan S, Ni JP (2008) N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation 19(5):651–658

    Article  Google Scholar 

  • Chen K, Liu XM, Li R, Liu Y, Hu H, Li SP, Jiang JD (2011) Isolation of a buprofezin co-metabolizing strain of Pseudomonas sp. DFS35-4 and identification of the buprofezin transformation pathway. Biodegradation 22(6):1135–1142

    Article  CAS  Google Scholar 

  • Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang LH (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23

    Article  CAS  Google Scholar 

  • Cox C (1997) Chlorothalonyl. J Pest Reform 17:14–20

    Google Scholar 

  • Dai YJ, Ji WW, Chen T, Zhang WJ, Liu ZH, Ge F, Yuan S (2010) Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. J Agr Food Chem 58(4):2419–2425

    Article  CAS  Google Scholar 

  • Fang H, Wang Y, Gao C, Yan H, Dong B, Yu Y (2010) Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation 21(6):939–946

    Article  CAS  Google Scholar 

  • Feng L, Xiong M, Cheng X, Hou N, Li C (2013) Construction and analysis of an intergeneric fusant able to degrade bensulfuron-methyl and butachlor. Biodegradation 24(1):47–56

    Article  CAS  Google Scholar 

  • Hashimoto S, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R (2006) Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biot 69(6):689–696

    Article  CAS  Google Scholar 

  • Jeong JJ, Kim JH, Kim CK, Hwang I, Lee K (2003) 3-and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2, 3-dioxygenase. Microbiology 149(11):3265–3277

    Article  CAS  Google Scholar 

  • Katayama A, Ukai T, Nomura K, Kuwatsuka S (1992) Formation of a methylthiolated metabolite from the fungicide chlorothalonil by soil bacteria. Biosci Biotech Bioch 56(9):1520–1521

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62(3):716–721

    Article  CAS  Google Scholar 

  • Li J, Liu J, Shen W, Zhao X, Hou Y, Cao H, Cui Z (2010) Isolation and characterization of 3,5,6-trichloro-2-pyridinol-degrading Ralstonia sp. strain T6. Bioresour Technol 101(19):7479–7483

    Article  CAS  Google Scholar 

  • Liang B, Wang G, Zhao Y, Chen K, Li S, Jiang J (2011) Facilitation of bacterial adaptation to chlorothalonil-contaminated sites by horizontal transfer of the chlorothalonil hydrolytic dehalogenase gene. Appl Environ Microb 77(12):4268–4272

    Article  CAS  Google Scholar 

  • Lu J, Guo C, Zhang M, Lu G, Dang Z (2014) Biodegradation of single pyrene and mixtures of pyrene by a fusant bacterial strain F14. Int Biodeter Biodegr 87:75–80

    Article  CAS  Google Scholar 

  • Mateu-Sanches M, Moreno M, Arrebola FJ, Vidal JLM (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19(5):701–704

    Article  Google Scholar 

  • Mehling A, Wehmeier UF, Piepersberg W (1995) Nucleotide sequences of streptomycete 16S ribosomal DNA: towards a specific identification system for streptomycetes using PCR. Microbiology 141(9):2139–2147

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. P Natl Acad Sci 76(10):5269–5273

    Article  CAS  Google Scholar 

  • Phugare SS, Jadhav JP (2015) Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori). Clean–Soil Air Water 43(2):296–304

    Article  CAS  Google Scholar 

  • Sanyal D, Chakma D, Alam S (2008) Persistence of a neonicotinoid insecticide, acetamiprid on chili (Capsicum annum L.). B Enviro Contam Tox 81(4):365–368

    Article  CAS  Google Scholar 

  • Savitha S, Sadhasivam S, Swaminathan K (2010) Regeneration and molecular characterization of an intergeneric hybrid between Graphium putredinis and Trichoderma harzianum by protoplasmic fusion. Biotechnol Adv 28(3):285–292

    Article  CAS  Google Scholar 

  • Sheng X, Liu F, Zhu Y, Zhao H, Zhang L, Chen B (2008) Production and analysis of intergeneric somatic hybrids between Brassica oleracea and Matthiola incana. Plant Cell Tiss Org 92(1):55–62

    Article  CAS  Google Scholar 

  • Shi X, Guo R, Takagi K, Miao Z, Li S (2011) Chlorothalonil degradation by Ochrobactrum lupini strain TP-D1 and identification of its metabolites. World J Microb Biot 27(8):1755–1764

    Article  CAS  Google Scholar 

  • Siglera WV, Turco RF (2002) The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl Soil Ecol 21(2):107–118

    Article  Google Scholar 

  • Suyama K, Yamamoto H, Tatsuyama K, Komada H (1991) Effect of long-term application of a fungicide, chlorothalonil, on cellulose decomposition and microflora in soil under upland conditions. J Pestic Sci 18(3):225–230

    Article  Google Scholar 

  • Takeo M, Prabu SK, Kitamura C, Hirai M, Takahashi H, D-i K, Negoro S (2006) Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J Biosci Bioeng 102(4):352–361

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tang H, Li J, Hu H, Xu P (2012) A newly isolated strain of Stenotrophomonas sp. hydrolyzes acetamiprid, a synthetic insecticide. Process Biochem 47(12):1820–1825

    Article  CAS  Google Scholar 

  • Tomizawa M, Yamamoto I (1993) Structure-activity relationships of nicotinoids and imidacloprid analogs. J Pestic Sci 18(1):91–98

    Article  Google Scholar 

  • Tomizawa M, Lee DL, Casida JE (2000) Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J Agr Food Chem 48(12):6016–6024

    Article  CAS  Google Scholar 

  • Toyama T, Maeda N, Murashita M, Chang Y-C, Kikuchi S (2010) Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp. strain MS-1. Biodegradation 21(2):157–165

    Article  CAS  Google Scholar 

  • Wang G, Li R, Li S, Jiang J (2010a) A novel hydrolytic dehalogenase for the chlorinated aromatic compound chlorothalonil. J Bacteriol 192(11):2737–2745

    Article  CAS  Google Scholar 

  • Wang L, Pan Z-Y, Guo W-W (2010b) Proteomic analysis of leaves from a diploid cybrid produced by protoplast fusion between Satsuma mandarin and pummelo. Plant Cell Tiss Org 103(2):165–174

    Article  CAS  Google Scholar 

  • Wang GL, Wang L, Chen HH, Shen B, Li SP, Jiang JD (2011a) Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Micr 61(3):674–679

    Article  CAS  Google Scholar 

  • Wang G, Liang B, Li F, Li S (2011b) Recent advances in the biodegradation of chlorothalonil. Curr Microbiol 63(5):450–457

    Article  CAS  Google Scholar 

  • Wang J, Hirai H, Kawagishi H (2012) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biot 93(2):831–835

    Article  CAS  Google Scholar 

  • Wang G, Chen X, Yue W, Zhang H, Li F, Xiong M (2013a) Microbial degradation of acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil. Plos One 8(12):e82603

    Article  Google Scholar 

  • Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H (2013b) Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour Technol 138:359–368

    Article  CAS  Google Scholar 

  • Wang G, Zhao Y, Gao H, Yue W, Xiong M, Li F, Zhang H, Ge W (2013c) Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated from a long-term acetamiprid-polluted soil. Bioresour Technol 150:259–265

    Article  CAS  Google Scholar 

  • Yang H, Wang X, Zheng J, Wang G, Hong Q, Li S, Li R, Jiang J (2013) Biodegradation of acetamiprid by Pigmentiphaga sp. D-2 and the degradation pathway. Int Biodeter Biodegr 85:95–102

    Article  CAS  Google Scholar 

  • Yoo YB, Lee KH, Kim BG (2002) Characterization of somatic hybrids with compatible and incompatible species by protoplast fusion in genera Pleurotus (Fr.) P. Karst. and Ganoderma P. Karst. by RAPD-PCR analysis. Int J Med Mushrooms 4(2)

  • Zhang Y, Lu J, Wu L, Chang A, Frankenberger WT (2007) Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1. Sci Total Environ 382(2):383–387

    Article  CAS  Google Scholar 

  • Zhao D, Wu B, Zhang Y, Jia H, Zhang X, Cheng S (2009) Identification of protoplast fusion strain Fhhh by randomly amplified polymorphic DNA. World J Microb Biot 25(7):1181–1188

    Article  CAS  Google Scholar 

  • Zhou LY, Zhang LJ, Sun SL, Ge F, Mao SY, Ma Y, Liu ZH, Dai YJ, Yuan S (2014) Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333. J Agr Food Chem 62(41):9957–9964

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chinese National Natural Science Foundation (31100083, 31300422, and 41501304), the Foundation for Young Talents in College of Anhui Province, the Natural Science Foundation from Educational Commission of Anhui Province (KJ2015A049), Provincial Natural Science Foundation of Anhui (1508085MC49 and 1408085QC47), Scholar Backbone Supporting Plan of Huaibei Normal University, and Construction Project from College Scientific Research Innovation Team of Anhui Province—Ecological Restoration and Utilization of Coal Mining Subsidence Area.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghua Xiong or Yuan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhu, D., Xiong, M. et al. Construction and analysis of an intergeneric fusion from Pigmentiphaga sp. strain AAP-1 and Pseudomonas sp. CTN-4 for degrading acetamiprid and chlorothalonil. Environ Sci Pollut Res 23, 13235–13244 (2016). https://doi.org/10.1007/s11356-016-6482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6482-y

Keywords

Navigation