Skip to main content
Log in

A fuzzy logic-classification of sediments based on data from in vitro biotests

  • SEDIMENTS, SEC 2 • RISK MANAGEMENT • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, aim, and scope

Ecotoxicological risk assessment of sediments is usually based on a multitude of data obtained from tests with different endpoints. In the present study, a fuzzy logic-based model was developed in order to reduce the complexity of these data sets and to classify sediments on the basis of results from a battery of in vitro biotests.

Materials and methods

The membership functions were adapted to fit the specific sensitivity and variability of each biotest. For this end, data sets were categorized into three toxicity levels using the box plot and empirical methods. The variability of each biotest was determined to calculate the range of the gradual membership. In addition, the biotests selected were ranked according to the biological organisation level in order to consider the ecological relevance of the endpoints measured by selected over- or underestimation of the toxicity levels. In the next step of the fuzzy logic model, a rule-base was implemented using if...and...then decisions to arrive at a system of five quality classes.

Results

The results of the classification of sediments from the Rhine and Danube Rivers showed the highest correlation between the biotest results and the fuzzy logic alternative based on the empirical method (i.e. the classification of the data sets into toxicity levels).

Discussion

Many different classification systems based on biological test systems are depending on respective data sets; therefore, they are difficult to compare with other locations. Furthermore, they don‘t consider the inherent variability of biotests and the ecological relevance of these test systems as well. In order to create a comprehensive risk assessment for sediments, mathematical models should be used which take uncertainties of biotest systems into account, since they are of particular importance for a reliable assessment. In the present investigation, the variability and ecological relevance of biotests were incorporated into a classification system based on fuzzy logic. Furthermore, since data from different sites and investigations were used to create membership functions of the fuzzy logic, this classification system has the potential to be independent of locations.

Conclusions

In conclusion, the present fuzzy logic classification model provides an opportunity to integrate expert knowledge as well as acute and mechanism-specific effects for the classification of sediments for an ecotoxicological risk assessment.

Recommendations and perspectives

In order to achieve a more comprehensive classification, further investigation is needed to incorporate results of chemical analyses and in situ parameters. Furthermore, more discussions are necessary with respect to the relative weight attributed to different ecological and chemical parameters in order to obtain a more precise assessment of sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriaenssens V, De Baets B, Goethals PL, De Pauw N (2004) Fuzzy rule-based models for decision support in ecosystem management. Sci Total Environ 319:1–12

    Article  CAS  Google Scholar 

  • Ahlf W, Heise S (2005) Sediment toxicity assessment. J Soils Sediments 5:16–20

    Article  CAS  Google Scholar 

  • Babut M, Oen A, Hollert H, Apitz S, Heise S, White S (2007) Prioritisation at river basin scale, risk assessment at site-specific scale: Suggested approaches. In: Heise S (ed) Sediment risk management and communication. Elsevier, Amsterdam, pp 107–152

    Google Scholar 

  • Baerlocher F (1999) Biostatistik. Thieme Verlag, Stuttgart. 206 pp

    Google Scholar 

  • Bojorquez-Tapia LA, Juarez L (2002) Integrating fuzzy logic, optimization, and GIS for ecological impact assessments. Environ Assess 30:418–433

    Google Scholar 

  • Borenfreund E, Puerner JA (1984) A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Meth 9:7–9

    Article  Google Scholar 

  • Braunbeck T (1998) Cytological alterations in fish hepatocytes following in vivo and in vitro sublethal exposure to xenobiotics—Structural biomarkers of environmental contamination. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology. Birkhäuser Verlag, Basel, pp 61–140

    Google Scholar 

  • Canfield TJ, Kemble NE, Brumbaugh WG, Dwyer FJ, Ingersoll C, Fairchild JF (1994) Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork River, Montana. Environ Toxicol Chem 13:1999–2012

    Article  CAS  Google Scholar 

  • Cox E (1994) The fuzzy systems handbook: A practitioner's guide to building using and maintaining fuzzy systems. Academic, Boston. 512 pp

    Google Scholar 

  • Diekmann M, Hultsch V, Nagel R (2004a) On the relevance of genotoxicity for fish populations I: Effects of a model genotoxicant on zebrafish (Danio rerio) in a complete life-cycle test. Aquat Toxicol 68:13–26

    Article  CAS  Google Scholar 

  • Diekmann M, Waldmann P, Schnurstein A, Grummt T, Braunbeck T, Nagel R (2004b) On the relevance of genotoxicity for fish populations II: Genotoxic effects in zebrafish (Danio rerio) exposed to 4-nitroquinoline-1-oxide in a complete life-cycle test. Aquat Toxicol 68:27–37

    Article  CAS  Google Scholar 

  • Duft M, Tillmann M, Oehlmann J (2003) Ökotoxikologische Sedimentkartierung der großen Flüsse Deutschlands, Bundesministerium für Umwelt. Naturschutz und Reaktorsicherheit, Berlin

    Google Scholar 

  • Engwall M, Broman D, Ishaq R, Näf C, Zebühr Y, Brunström B (1996) Toxic potencies of lipophilic extracts from sediments and settling particulate matter (SPM) collected in a PCB contaminated river system. Environ Toxicol Chem 15:213–222

    Article  CAS  Google Scholar 

  • EWFD (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, European Union

  • Heise S, Ahlf W (2002) The need for new concepts in risk management of sediments: Historical developments, future perspectives and new approaches. J Soils Sediments 2:4–8

    Article  CAS  Google Scholar 

  • Heise S, Maaß V, Gratzer H, Ahlf W (2000) Möglichkeiten und Leistungen einer ökotoxikologischen Sedimentklassifikation am Beispiel der Elbe. Bundesanstalt für Gewässerkunde, Koblenz

    Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T (2000) Cytotoxicity of settling particulate matter (SPM) and sediments of the Neckar river (Germany) during a winter flood. Environ Toxicol Chem 19:528–534

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Olsman H, Halldin K, van Bavel B, Brack W, Tysklind M, Engwall M, Braunbeck T (2002a) Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the Neckar River. Ecotoxicol 11:323–336

    Article  CAS  Google Scholar 

  • Hollert H, Heise S, Pudenz S, Brüggemann R, Ahlf W, Braunbeck T (2002b) Application of a sediment quality triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicol 11:311–321

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio). J Soils Sediments 3:19–207

    Article  Google Scholar 

  • Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout—deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Environ Sci Pollut Res 12:347–360

    Article  CAS  Google Scholar 

  • Hollert H, Heise S, Keiter S, Heinrich H, Förstner U (2007) Wasserrahmenrichtlinie—Fortschritte und Defizite. Umweltwiss Schadst Forsch 19:58–70

    Article  CAS  Google Scholar 

  • Jorgensen SE (1999) State-of-the-art of ecological modelling with emphasis on development of structural dynamic models. Ecol Modell 120:75–96

    Article  Google Scholar 

  • Keiter S, Rastall AC, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube River—a pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res 13:308–319

    Article  CAS  Google Scholar 

  • Keiter S, Grund S, van Bavel B, Engwall M, Hagberg J, Kammann U, Klempt M, Manz W, Olsman H, Braunbeck T, Hollert H (2008) Activities and identification of Ah receptor agonists in sediments from the Danube River. Anal Bioanal Chem 390:2009–2020

    Article  CAS  Google Scholar 

  • König N, Garke V, Kosmehl T, Glaß B, Golod A, Leist E, Wetterauer B, Johannsen H, Braunbeck T, Hollert H (2002) Der Zebrabärbling in Fischeitest und Comet-Assay—Embryotoxische Untersuchungen von Rheinsedimenten. Bundesanstalt für Gewässerkunde, Koblenz

    Google Scholar 

  • Kosmehl T, Krebs F, Manz W, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine river sediment extracts using the permanent cell lines RTG-2 and RTL-W1 in the comet assay and ames assay. J Soils Sediments 4:84–94

    Article  CAS  Google Scholar 

  • Lee LEJ, Clemons JH, Bechtel DG, Caldwell SJ, Han K, Pasitschniak-Arts M, Mosser DD, Bols NC (1993) Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol Toxicol 9:279–294

    Article  CAS  Google Scholar 

  • Regan HM, Colyvan M, Burgman MA (2002) A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol Appl 12:618–628

    Article  Google Scholar 

  • Sachs L (2004) Angewandte Statistik, 11. Springer Verlag, Heidelberg. 889 pp

    Google Scholar 

  • Salski A, Kandzia P (1996) Fuzzy sets and fuzzy logic in ecological modelling. Eco Sys 4:85–97

    Google Scholar 

  • Seitz N, Böttcher M, Keiter S, Kosmehl T, Manz W, Hollert H, Braunbeck T (2008) A novel index to evaluate genotoxicity data from dose-response curves in the comet assay. Mut Res 652:38–45

    CAS  Google Scholar 

  • Shepard RB (2005) Quantifying environmental impact assessments using fuzzy logic. Springer Series on environmental management. Springer, New York. 264 pp

    Book  Google Scholar 

  • Silvert W (1997) Ecological impact classification with fuzzy sets. Ecol Modell 96:1–10

    Article  Google Scholar 

  • Silvert W (2000) Fuzzy indices of environmental conditions. Ecol Modell 130:111–119

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Tran LT, Knight CG, O'Neill RV, Smith ER, Riitters KH, Wickham J (2002) Fuzzy decision analysis for integrated environmental vulnerability assessment of the mid-Atlantic Region. Environ Manag 29:845–859

    Article  Google Scholar 

  • Ulrich M, Schulze T, Leist E, Glaß B, Maier M, Maier D, Braunbeck T, Hollert H (2002) Ökotoxikologische Untersuchung von Sedimenten und Schwebstoffen: Abschätzung des Gefährdungspotenzials für Trinkwasser und Korrelation verschiedener Expositionspfade (Acetonischer Extrakt, Natives Sediment) im Bakterienkontakttest und Fischeitest. Umweltwiss Schadst Forsch 14:132–137

    Article  CAS  Google Scholar 

  • White PA, Robitaille S, Rasmussen JB (1999) Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (Pimephales promelas). Environ Toxicol Chem 18:1843–1847

    Article  CAS  Google Scholar 

  • Wickham JD, Jones KB, Riitters KH, O'Neill RV, Tankersley RD, Smith ER, Neale AC, Chaloud DJ (1999) Environmental Auditing: An integrated environmental assessment of the US Mid-Atlantic region. Environ Manag 24:553–560

    Article  Google Scholar 

  • Yauk CL, Fox GA, McCarry BE, Quinn JS (2000) Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat Res 452:211–218

    CAS  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zorita I, Apraiz I, Ortiz-Zarragoitia M, Orbea A, Cancio I, Soto M, Marigomez I, Cajaraville MP (2007) Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms. Environ Pollut 148:236–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Keiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiter, S., Braunbeck, T., Heise, S. et al. A fuzzy logic-classification of sediments based on data from in vitro biotests. J Soils Sediments 9, 168–179 (2009). https://doi.org/10.1007/s11368-009-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-009-0087-8

Keywords

Navigation