Skip to main content

Advertisement

Log in

Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a “triad plus x” approach

  • SEDIMENTS, SEC 4 • SEDIMENT-ECOLOGY INTERACTIONS • POSITION PAPER
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Freshwater sediments and their attached microbial communities (biofilms) are essential features of rivers and lakes, providing valuable ecosystem services such as nutrient recycling or self-purification which extend beyond the aquatic environment. Anthropogenic pollutants, whether from the industrial era or as a result of our contemporary lifestyles, can negatively affect these functions with hitherto unknown consequences on ecology, the economy and human health. Thus far, the singular view of the involved disciplines such as ecotoxicology, environmental microbiology, hydrology and geomorphology has prevented a deeper understanding of this emerging issue.

Main features

This paper discusses briefly the progressions and the state-of-the-art methods within the disciplines of concern related to contaminated sediments, ranging from ecotoxicological test systems, microbiological/molecular approaches to unravel changes of microbial ecosystems, up to the modelling of sediment transport and sorption/desorption of associated pollutants. The first bilateral research efforts on contaminated sediments include efforts to assess ecotoxicological sediment risk including sediment mobility (i.e. ecotoxicology and engineering), enhance bioremediation potential (i.e. microbiology and ecotoxicology) or to understand biostabilisation processes of sediments by microbial assemblages (i.e. microbiology and engineering).

Conclusions and perspectives

In freshwater habitats, acute, chronic and mechanism-specific toxic effects on organisms, shifts in composition, structure and functionality of benthic microbial communities, as well as the obstruction of important ecosystem services by continuously discharged and long-deposited pollutants, should be related to the in situ sediment dynamics. To achieve an improved understanding of the ecology of freshwater sediments and the impairment of their important ecosystem functions by human-derived pollutants, we suggest a “triad plus x” approach combining advanced methods of ecotoxicology, environmental microbiology and engineering science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlf W, Calmano W, Erhard J, Förstner U (1989) Comparison of 5 bioassay techniques for assessing sediment-bound contaminants. Hydrobiologia 188:285–289

    Article  Google Scholar 

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002) A guidance for the assessment and evaluation of sediment quality: a German approach based on ecotoxicological and chemical measurements. J Soils Sediments 2:37–42

    Article  CAS  Google Scholar 

  • Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with Salmonella–mammalian–microsome mutagenicity test. Mutat Res 31:347–363

    CAS  Google Scholar 

  • Babut M, Oen A, Hollert H, Apitz S, Heise S, White S (2007) Prioritisation at catchment scale, risk ranking at local scale: suggested approaches. In: Heise S (ed) Sustainable management of sediment resources: risk management and communication. Elsevier, Amsterdam, pp 107–150

    Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD, Cheng XH, Hansen C (2003a) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD, Hansen CME (2003b) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442

    Article  CAS  Google Scholar 

  • Belleudy P, Sogreah (2000) Numerical simulation of sediment mixture deposition. Part 1: analysis of a flume experiment. J Hydrol Res 38:417–425

    Article  Google Scholar 

  • Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng—ASCE 128:2–8

    Article  Google Scholar 

  • Boeckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates ('river snow') in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170

    Google Scholar 

  • Borsie B (2006) Biological influence on sediment transport and bed composition for the Western Wadden Sea. University of Twente

  • Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins—a review. Environ Sci Pollut Res 14:30–38

    Article  CAS  Google Scholar 

  • Brinkmann M, Hudjetz S, Cofalla C, Roger S, Kammann U, Giesy JP, Hecker M, Wiseman S, Zhang X, Wölz J, Schüttrumpf H, Hollert H (2010) A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part I—multiple biomarkers in rainbow trout. J Soils Sediments 10:1347–1361

    Article  CAS  Google Scholar 

  • Buffington JM (1999) The legend of A.F. Shields. J Hydraul Eng—ASCE 125:376–387

    Article  Google Scholar 

  • Burton GA (1991) Assessing the toxicity of freshwater sediments. Environ Toxicol Chem 10:1585–1627

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Forstner U (1993) Binding and mobilization of heavy-metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    CAS  Google Scholar 

  • Chapman PM (1990) The Sediment Quality Triad approach to determining pollution-induced degradation. Sci Total Environ 97(98):815–825

    Google Scholar 

  • Chapman PM (2000) The Sediment Quality Triad: then, now and tomorrow. Environ Sci Pollut Res 13:351–356

    CAS  Google Scholar 

  • Chapman PM, Hollert H (2006) Should the sediment triad become a tetrad, pentad or possibly even a hexad? J Soils Sediments 6:4–8

    Article  Google Scholar 

  • Chapman PM, Ho KT, Munns WR, Solomon K, Weinstein MP (2002) Issues in sediment toxicity and ecological risk assessment. Mar Pollut Bull 44:271–278

    Article  CAS  Google Scholar 

  • Darby SE (2010) Reappraising the geomorphology–ecology link. Earth Surf Processes Landforms 35:368–371

    Article  Google Scholar 

  • de Brouwer JFC, Bjelic S, de Deckere E, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Cont Shelf Res 20:1159–1177

    Article  Google Scholar 

  • Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27

    Article  CAS  Google Scholar 

  • Dercova K, Cicmanova J, Lovecka P, Demnerova K, Mackova M, Hucko P, Kusnir P (2008) Isolation and identification of PCB-degrading microorganisms from contaminated sediments. Int Biodeterior Biodegrad 62:219–225

    Article  CAS  Google Scholar 

  • Dermott R, Munawar M (1992) A simple and sensitive assay for evaluation of sediment toxicity using Lumbriculus variegatus (Müller). Hydrobiologia 235–236:407–414

    Article  Google Scholar 

  • DIN 38412-48 (2002) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlamm-untersuchung: Testverfahren mit Wasserorganismen (Gruppe L) Teil 48: Arthrobacter globiformis Kontakttest für kontaminierte Feststoffe. Deutsches Institut für Normierung e. V., Berlin

  • Dobretsov S, Dahms HU, Huang YL, Wahl M, Qian PY (2007) The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol 60:177–188

    Article  CAS  Google Scholar 

  • Droppo IG (2001) Rethinking what constitutes suspended sediment. Hydrol Processes 15:1551–1564

    Article  Google Scholar 

  • Droppo IG (2004) Structural controls on floc strength and transport. Can J Civ Eng 31:569–578

    Article  Google Scholar 

  • Dynes JJ, Lawrence JR, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2006) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369:369–383

    Article  CAS  Google Scholar 

  • Edlund A, Jansson JK (2006) Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments. Appl Environ Microbiol 72:6800–6807

    Article  CAS  Google Scholar 

  • Einsporn S, Broeg K, Koehler A (2005) The Elbe flood 2002—toxic effects of transported contaminants in flatfish and mussels of the Wadden Sea. Mar Pollut Bull 50:423–429

    Article  CAS  Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230

    Article  CAS  Google Scholar 

  • Feiler U, Ahlf W, Hoess S, Hollert H, Neumann-Hensel H, Meller M, Weber J, Heininger P (2005) The SeKT Joint Research Project: definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Environ Sci Pollut Res 12:257–258

    Article  Google Scholar 

  • Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  Google Scholar 

  • Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale—examples from the Elbe River catchment area. J Soils Sediments 4:247–260

    Article  Google Scholar 

  • Gabrielson J, Kuhn I, Colque-Navarro P, Hart M, Iversen A, McKenzie D, Mollby R (2003) Microplate-based microbial assay for risk assessment and (eco)toxic fingerprinting of chemicals. Anal Chim Acta 485:121–130

    Article  CAS  Google Scholar 

  • Garland J (1999) Potential and limitations of BIOLOG for microbial community analysis. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, pp 1–7

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2005) Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments—temporal and vertical pattern at the Lauffen reservoir/River Neckar, Germany. Limnologica 35:132–144

    CAS  Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2007) Sediment properties for assessing the erosion risk of contaminated riverine sites. J Soils Sediments 7:25–35

    Article  CAS  Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B, Paterson DM (2008a) Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology 6:57–69

    CAS  Google Scholar 

  • Gerbersdorf SU, Manz W, Paterson DM (2008b) The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments. FEMS Microbiol Ecol 66:282–294

    Article  CAS  Google Scholar 

  • Gerbersdorf SU, Bittner R, Lubarsky H, Manz W, Paterson DM (2009a) Microbial assemblages as ecosystem engineers of sediment stability. J Soils Sediments 9:640–652

    Article  CAS  Google Scholar 

  • Gerbersdorf SU, Westrich B, Paterson DM (2009b) Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microb Ecol 58:334–349

    Article  CAS  Google Scholar 

  • Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36:146A–152A

    Article  CAS  Google Scholar 

  • Giger W (2009) The Rhine red, the fish dead—the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment. Environ Sci Pollut Res 16:98–111

    Article  CAS  Google Scholar 

  • Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization–microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596

    Article  CAS  Google Scholar 

  • Grote M, Altenburger R, Brack W, Moschutz S, Mothes S, Michael C, Narten CB, Paschke A, Schirmer K, Walter H, Wennrich R, Wenzel KD, Schuurmann G (2005) Ecotoxicological profiling of transect river Elbe sediments. Acta Hydrochimica Et Hydrobiologica 33:555–569

    Article  CAS  Google Scholar 

  • Haag I, Westrich B (2002) Processes governing river water quality identified by principal component analysis. Hydrol Processes 16:3113–3130

    Article  Google Scholar 

  • Haag I, Kern U, Westrich B (2001) Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. Sci Total Environ 266:249–257

    Article  CAS  Google Scholar 

  • Hallare A, Seiler T, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11:141–173

    Article  CAS  Google Scholar 

  • Hassanshahian M, Emtiazi G, Kermanshahi RK, Cappello S (2010) Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea. Soil Sediment Contam 19:277–291

    Article  CAS  Google Scholar 

  • Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16:607–613

    Article  Google Scholar 

  • Hollert H, Dürr M, Haag I, Winn N, Holtey-Weber R, Kern U, Färber H, Westrich B, Erdinger L, Braunbeck T (2000) A combined hydraulic and in vitro bioassay approach to assess the risk of erosion and ecotoxicological implications of contaminated sediments in a lock-regulated river system. In: BfG (ed) Sediment assessement in European River Basins. Reihe: Mitteilungen der Bundesanstalt für Gewässerkunde, Koblenz, Berlin, pp 156–160

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207

    Article  Google Scholar 

  • Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout. Deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Environ Sci Pollut Res 12:347–360

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Haag I, Wölz J, Hilscherova K, Blaha L, Gerbersdorf SU (2007) Influence of hydrodynamics on sediment ecotoxicity. In: Westrich B, Förstner U (eds) Sediment dynamics and pollutant mobility in rivers. Springer, Berlin, pp 401–416

    Google Scholar 

  • Holzhauer H (2003) Biogeomorphology, small activities with large effects? University of Twente

  • Hsu P, Matthai A, Heise S, Ahlf W (2007) Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe. Environ Pollut 148:817–823

    Article  CAS  Google Scholar 

  • IKSE IKzSdE (2004) Dokumentation des Hochwassers vom August 2002 im Einzugsgebiet der Elbe

  • ISO 11348-1 (1998) Wasserbeschaffenheit—Bestimmung der Hemmwirkung von Wasserproben auf die Lichtemission von Vibrio fischeri (Leuchtbakterientest)—Teil 1: Verfahren mit frisch gezüchteten Bakterien

  • Jepsen R, Roberts J, Lick W (1997) Effects of bulk density on sediment erosion rates. Water Air Soil Pollut 99:21–31

    CAS  Google Scholar 

  • Jonker MTO, Suijkerbuijk MPW, Schmitt H, Sinnige TL (2009) Ecotoxicological effects of activated carbon addition to sediments. Environ Sci Technol 43:5959–5966

    Article  CAS  Google Scholar 

  • Kammann U, Lang T, Vobach M, Wosniok W (2005) Ethoxyresorufin-O-deethylase (EROD) activity in dab (Limanda limanda) as biomarker for marine monitoring. Environ Sci Pollut Res Int 12:140–145

    Article  CAS  Google Scholar 

  • Karnahl JA (2009) 2D numerical modeling of multifractional suspended sediment transport and pollutant transport in rivers. University Stuttgart, Stuttgart, 158 pp

    Google Scholar 

  • Keiter S, Grund S, van Bavel B, Hagberg J, Engwall M, Kammann U, Klempt M, Manz W, Olsman H, Braunbeck T, Hollert H (2008) Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube River. Anal Bioanal Chem 390:2009–2019

    Article  CAS  Google Scholar 

  • Kostanjsek R, Lapanje A, Drobne D, Perovic S, Perovic A, Zidar P, Strus J, Hollert H, Karaman G (2005) Bacterial community structure analyses to assess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Environ Sci Pollut Res Int 12:361–368

    Article  CAS  Google Scholar 

  • Kuehlers D, Bethge E, Hillebrand G, Hollert H, Fleig M, Lehmann B, Maier D, Maier M, Mohrlok U, Wolz J (2009) Contaminant transport to public water supply wells via flood water retention areas. Natural Hazards Earth System Sci 9:1047–1058

    Article  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Management 90:2354–2366

    Article  CAS  Google Scholar 

  • Lachmund C, Köcher B, Manz W, Heininger P (2003) Chemical and microbiological in situ characterization of benthic communities in sediments with different contamination levels. J Soils Sediments 3:188–196

    Article  CAS  Google Scholar 

  • Larson F, Lubarsky H, Paterson DM, Gerbersdorf SU (2009) Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol Oceanogr: Methods 7:490–497

    Article  Google Scholar 

  • Lau YL, Droppo IG (2000) Influence of antecedent conditions on critical shear stress of bed sediments. Water Res 34:663–667

    Article  CAS  Google Scholar 

  • Lawrence JR, Zhu B, Swerhone GDW, Roy J, Wassenaar LI, Topp E, Korber DR (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307–3316

    Article  CAS  Google Scholar 

  • Le Hir P, Monbet Y, Orvain F (2007) Sediment erodability in sediment transport modelling: can we account for biota effects? Cont Shelf Res 27:1116–1142

    Article  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    CAS  Google Scholar 

  • Liss W, Ahlf W (1997) Evidence from whole-sediment, porewater, and elutriate testing in toxicity assessment of contaminated sediments. Ecotoxicol Environ Safe 36:140–147

    Article  CAS  Google Scholar 

  • Liss SN, Droppo IG, Flannigan DT, Leppard GG (1996) Floc architecture in wastewater and natural riverine systems. Environ Sci Technol 30:680–686

    Article  CAS  Google Scholar 

  • Liu Y, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Env Sci Tech 33:237–273

    Article  CAS  Google Scholar 

  • Maier M, Kühlers D, Brauch H-J, Fleig M, Maier D, Jirka GH, Mohlock U, Bethge E, Bernhart HH, Lehmann B, Hillebrand G, Wölz J, Hollert H (2005) RIMAX-Verbundprojekt HoT—Spannungsfeld Hochwasserrückhaltung und Trinkwasser-versorgung: Vermeidung von Nutzungskonflikten. Umweltwiss Schadst Forsch 17:248–249

    Article  Google Scholar 

  • Manz W (1999) In situ analysis of microbial biofilms by rRNA-targeted oligonucleotide probes. In: Doyle RJ (ed) Biofilms. Academic Press, San Diego, pp 79–91

    Chapter  Google Scholar 

  • Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37:225–237

    Article  CAS  Google Scholar 

  • Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Meth 40:125–134

    Article  CAS  Google Scholar 

  • Manz W, Wagner M, Kalmbach S (2001) Assessment of metabolic potential of biofilm-associated bacteria. In: Doyle RJ (ed) Microbial growth in biofilms, part A: developmental and molecular biological aspects. Academic Press, San Diego, pp 265–276

    Chapter  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  Google Scholar 

  • McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45:1514–1522

    Article  CAS  Google Scholar 

  • McNeil J, Lick W (2004) Erosion rates and bulk properties of sediments from the Kalamazoo River. J Great Lakes Res 30:407–418

    Article  Google Scholar 

  • Näslund J, Hedman JE, Agestrand C (2008) Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat Toxicol 90:223–227

    Article  CAS  Google Scholar 

  • Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72:1–21

    Article  CAS  Google Scholar 

  • Noak M, Wieprecht S (2010) The Quality of the Hyporheic Interstitial: A Challenge for Morphology and Biology. IAHR First European Congress, Edinburgh, Scotland

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  Google Scholar 

  • Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (UMU-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229

    CAS  Google Scholar 

  • OECD 218 (2004) OECD guideline 218: Sediment-water chironomid toxicity using spiked sediment. Organisation for Economic Co-operation and Development, Berlin

  • Oetken M, Stachel B, Pfenninger M, Oehlmann J (2005) Impact of a flood disaster on sediment toxicity in a major river system—the Elbe flood 2002 as a case study. Environ Pollut 134:87–95

    Article  CAS  Google Scholar 

  • Onbasli D, Aslim B (2009) Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. J Hazard Mater 168:64–67

    Article  CAS  Google Scholar 

  • Paarlberg AJ, Knaapen MAF, de Vries MB, Hulscher S, Wang ZB (2005) Biological influences on morphology and bed composition of an intertidal flat. Estuar Coast Shelf S 64:577–590

    Article  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  CAS  Google Scholar 

  • Parchure TM, Mehta AJ (1985) Erosion of soft cohesive sediment deposits. J Hydraul Eng—ASCE 111:1308–1326

    Article  Google Scholar 

  • Partheniades E (1965) Erosion and deposition of cohesive soils. J Hydraul Eng Div ASCE 91(HY1):105–138

    Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Paterson DM, Tolhurst TJ, Kelly JA, Honeywill C, de Deckere E, Huet V, Shayler SA, Black KS, de Brouwer J, Davidson I (2000) Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK. Cont Shelf Res 20:1373–1396

    Article  Google Scholar 

  • Paterson D, Aspden R, Visscher P, Consalvey M, Andres M, Decho A, Stolz J, Reid P (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3:e3176

    Article  CAS  Google Scholar 

  • Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  Google Scholar 

  • Perkins RG, Sun HY, Watson J, Player MA, Gust G, Paterson DM (2004) In-line laser holography and video analysis of eroded floc from engineered and estuarine sediments. Environ Sci Technol 38:4640–4648

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  CAS  Google Scholar 

  • Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotech 14:296–302

    Article  CAS  Google Scholar 

  • Raes J, Bork P (2008) Systems microbiology–timeline–molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6:693–699

    Article  CAS  Google Scholar 

  • Ravisangar V, Brouckaert BM, Amirtharajah A, Sturm TW (2001) The role of solution chemistry in the stability and detachment of cohesive kaolinite particles. Water Science and Technology: Water Supply 1:25–32

    CAS  Google Scholar 

  • Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61

    Article  CAS  Google Scholar 

  • Riding R, Amrawik SM (2000) Microbial sediments. Springer, New York, 331 pp

    Google Scholar 

  • Schutte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  CAS  Google Scholar 

  • Schwartz R, Gerth J, Neumann-Hensel H, Bley S, Forstner U (2006) Assessment of highly polluted fluvisol in the Spittelwasser floodplain—based on national guideline values and MNA-criteria. J Soils Sediments 6:145–155

    Article  CAS  Google Scholar 

  • Shields A (1936) Anwendungen der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der preußischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin 26

  • Shvidchenko AB, Pender G (2000) Flume study of the effect of relative depth on the incipient motion of coarse uniform sediments. Water Resour Res 36:619–628

    Article  Google Scholar 

  • Solan M, Raffaelli DG, Paterson DM, White PCL, Pierce GJ (2006) Marine biodiversity and ecosystem function: empirical approaches and future research needs—introduction. Mar Ecol Prog Ser 311:175–178

    Article  Google Scholar 

  • Solan M, Batty P, Bulling MT, Godbold JA (2008) How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquat Biol 2:289–301

    Article  Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Article  Google Scholar 

  • Stone M, Krishnappan BG, Emelko MB (2008) The effect of bed age and shear stress on the particle morphology of eroded cohesive river sediment in an annular flume. Water Res 42:4179–4187

    Article  CAS  Google Scholar 

  • Tuhtan J, Wieprecht S, Schneider M (2010) Automating River Rehabilitation Measure Design Considering Ecological and Economic Constraints, 8. International Symposium on Environmental Hydraulics (ISEH), Seoul, Korea

  • Turner A, Millward GE (2002) Suspended particles: their role in estuarine biogeochemical cycles. Estuar Coast Shelf 55:857–883

    Article  CAS  Google Scholar 

  • Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:183–240

    Article  CAS  Google Scholar 

  • van Beelen P (2003) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53:795–808

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Wadhia K, Dando TR (2009) Environmental toxicity testing using the microbial assay for risk assessment (MARA). Fresen Environ Bull 18:213–218

    CAS  Google Scholar 

  • Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

  • Westrich B, Haag I, Kern U (2000) Mobilität von schadstoffen in den sedimenten staugeregelter flüsse—dynamik und bilanzierung von schwebstoffen und schwermetallen in einer stauhaltungskette. University Stuttgart, Stuttgart

    Google Scholar 

  • WFD (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy

  • Widdows J, Brinsley M (2002) Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–156

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Salkeld PN, Lucas CH (2000) Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar Ecol Prog Ser 194:23–37

    Article  Google Scholar 

  • Wölz J, Engwall M, Maletz S, Takner HO, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance approach using in vitro methods and chemical analysis. Environ Sci Pollut Res 15:536–553

    Article  CAS  Google Scholar 

  • Wölz J, Cofalla C, Hudjetz S, Roger S, Brinkmann M, Schmidt B, Schäffer A, Kammann U, Lennartz G, Hecker M, Schüttrumpf H, Hollert H (2009) In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. J Soils Sediments 9:1–5

    Article  CAS  Google Scholar 

  • Wölz J, Brack W, Moehlenkamp C, Claus E, Braunbeck T, Hollert H (2010) Effect-directed analysis of Ah receptor-mediated activities caused by PAHs in suspended particulate matter sampled in flood events. Sci Total Environ 408:3327–3333

    Article  CAS  Google Scholar 

  • Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21

    Article  CAS  Google Scholar 

  • Wu WM, Wang SSY, Jia YF (2000) Nonuniform sediment transport in alluvial rivers. J Hydraul Res 38:427–434

    Article  Google Scholar 

  • Wu B, Molinas A, Shu A (2003) Fractional transport of sediment mixtures. Int J Sediment Res 18:232–247

    Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support of this study. S.U. Gerbersdorf currently holds a Margarete-von-Wrangell Fellowship for postdoctoral lecture qualification, financed by the Ministry of Science, Research and the Arts (MSK) and the European Social Fund (ESF) of Baden-Württemberg. H. Hollert and M. Brinkmann are indebted to the Exploratory Research Space (ERS) at RWTH Aachen University, as part of the German Excellence Initiative, for funding of the Pathfinder project Floodsearch and the Boost-Funds project Floodsearch II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Ulrike Gerbersdorf.

Additional information

Responsible editor: Ian G. Droppo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerbersdorf, S.U., Hollert, H., Brinkmann, M. et al. Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a “triad plus x” approach. J Soils Sediments 11, 1099–1114 (2011). https://doi.org/10.1007/s11368-011-0373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0373-0

Keywords

Navigation