Skip to main content

Advertisement

Log in

Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties

  • SPECTRO-MICROSCOPIC CHARACTERIZATION OF BIOGEOCHEMICAL INTERFACES IN SOIL
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Properties of Fe oxides are poorly understood in soils with fluctuating water tables and variable redox conditions. The objective of this research was to (a) characterize the mineralogical composition of Fe oxides and (b) determine the relationship to the stable Fe isotope ratio in a soil with temporally and spatially sharp redox gradients.

Materials and methods

The lowland Gleysol (Petrogleyic) is in Northwest Germany and consists of oximorphic soil horizons (Ah 0–15, Bg 15–35, and CrBg 35–70 cm) developed from Holocene fluvial loam overlaying glaciofluvial sand with reductomorphic properties (2Cr horizon, +70 cm). Field measurements during the course of 28 months included the monitoring of groundwater table, soil redox potential, and analysis of the soil solutions. Solid Fe phases were studied by room temperature and cryogenic 57Fe Mössbauer spectroscopy, and stable Fe isotope compositions by multiple collector inductively coupled plasma mass spectrometry.

Results and discussion

The groundwater table ranged from −83 cm below to +8 cm above soil surface (median −27 cm). Permanent reducing conditions occurred in the 2Cr horizon with dissolved Fe concentrations of 44.8 mg L−1 (median). The duration of oxidizing conditions increased in the order CrBg < Bg < Ah. Total Fe increased from 50 (Ah) over 316 (Bg) up to 412 g kg−1 (CrBg) and was lowest in the 2Cr horizon (7 g kg−1). Ferrihydrite (51% of total Fe) was dominant over goethite (24%) in the Ah horizon. Conversely, nanogoethite dominated both the Bg (94%) and CrBg (86%) horizons. Iron in siderite amounted to 7% in the CrBg horizon. Iron isotope compositions yielded a range of δ 57Fe values from +0.29‰ (Ah horizon) to −0.30‰ (Bg horizon). In contrast to the overlying CrBg (δ 57Fe = −0.19‰) and Bg horizons, the 2Cr horizon is characterized by a relatively high δ 57Fe value of +0.22‰.

Conclusions

Lasting water saturation and frequent reducing conditions lead to the enrichment of goethite in subsoil. Once formed, goethite remains stable compared to ferrihydrite because it is less available for microbial mediated reductive dissolution. High δ 57Fe values in the topsoil primary result from fast ferrihydrite precipitation during aeration immediately after reducing conditions. In contrast, the low δ 57Fe values of the Fe-rich horizons (Bg, CrBg) promote adsorption of dissolved Fe with a light isotope composition onto goethite during capillary rise. The high δ 57Fe value of the Fe-poor subsoil (2Cr) is related to silicate-bound Fe rather than dissolution and precipitation of Fe oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold GL, Weyer S, Anbar AD (2004) Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. Anal Chem 76:322–327

    Article  CAS  Google Scholar 

  • Banning A, Coldewey WG, Gobel P (2009) A procedure to identify natural arsenic sources, applied in an affected area in North Rhine-Westphalia, Germany. Environ Geol 57:775–787

    Article  CAS  Google Scholar 

  • Barnhisel RI, Bertsch PM (1989) Chlorites and hydroxy-Interlayered vermiculite and smectite. In: Dixon JB, Weed SB (ed) Minerals in soil environments. Book series No.1, 2nd edn. Soil Sci Soc Am, Madison, USA, pp 729–788

  • Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient earth and other planetary bodies. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, Washington, pp 319–357

    Google Scholar 

  • Beard BL, Johnson CM, Cox L, Sun H, Nealson KH, Aguilar C (1999) Iron isotope biosignatures. Science 285:1889–1892

    Article  CAS  Google Scholar 

  • Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet Sci Lett 295:241–250

    Article  CAS  Google Scholar 

  • Bigeleisen J (1965) Chemistry of isotopes. Science 147:463–471

    Article  CAS  Google Scholar 

  • Blume HP (1988) The fate of iron during soil formation in humid-temperate environments. In: Stucki JW (ed) Iron in soils and clay minerals. Reidel, Dordrecht, pp 749–777

    Google Scholar 

  • Blume HP, Schwertmann U (1969) Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Sci Soc Am Proc 33:438–444

    Article  CAS  Google Scholar 

  • Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9:279–286

    Article  CAS  Google Scholar 

  • Brantley SL, Liermann L, Bullen TD (2001) Fractionation of Fe isotopes by soil microbes and organic acids. Geology 29:535–538

    Article  CAS  Google Scholar 

  • Brantley SL, Liermann LJ, Guynn RL, Anbar A, Icopini GA, Barling J (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim Cosmochim Acta 68:3189–3204

    Article  CAS  Google Scholar 

  • Breuning-Madsen H, Ronsbo J, Holst MK (2000) Comparison of the composition of iron pans in Danish burial mounds with bog iron and spodic material. Catena 39:1–9

    Article  CAS  Google Scholar 

  • Bullen TD, White A, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29:699–702

    Article  CAS  Google Scholar 

  • Childs CW (1992) Ferrihydrite: a review of structure, properties and occurrence in relation to soils. Z Pflanzenernähr Bodenk 155:441–448

    Article  CAS  Google Scholar 

  • Clayton RE, Hudson-Edwards KA, Malinovsky D, Andersson P (2005) Fe isotope fractionation during the precipitation of ferrihydrite and transformation of ferrihydrite to goethite. Mineral Mag 69:667–676

    Article  CAS  Google Scholar 

  • Cogger CG, Kennedy PE, Carlson D (1992) Seasonally saturated soils in the Puget Lowland II. Measuring and interpreting redox potentials. Soil Sci 154:50–58

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides. Structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VHC, Weinheim

  • Cornu S, Cattle JA, Samouelian A, Laveuf C, Guilherme LRG, Alberic P (2009) Impact of redox cycles on manganese, iron, cobalt, and lead in nodules. Soil Sci Soc Am J 73:1231–1241

    Article  CAS  Google Scholar 

  • Crerar DA, Knox GW, Means JL (1979) Biogeochemistry of bog iron in the New Jersey Pine Barrens. Chem Geol 24:111–135

    Article  CAS  Google Scholar 

  • Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1227–1242

    Article  CAS  Google Scholar 

  • Crosby HA, Johnson CM, Roden EE, Beard BL (2005) Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Technol 39:6698–6704

    Article  CAS  Google Scholar 

  • Eusterhues K, Wagner FE, Hausler W, Hanzlik M, Knicker H, Totsche KU, Kogel-Knabner I, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environ Sci Technol 42:7891–7897

    Article  CAS  Google Scholar 

  • Eusterhues K, Rennert T, Knicker H, Kogel-Knabner I, Totsche KU, Schwertmann U (2011) Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption. Environ Sci Technol 45:527–533

    Article  CAS  Google Scholar 

  • Fantle MS, DePaolo DJ (2004) Iron isotopic fractionation during continental weathering. Earth Planet Sci Lett 228:547–562

    Article  CAS  Google Scholar 

  • Fehr MA, Andersson PS, Halenius U, Morth CM (2008) Iron isotope variations in Holocene sediments of the Gotland Deep, Baltic Sea. Geochim Cosmochim Acta 72:807–826

    Article  CAS  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: Importance, field measurements, and observations. Adv Agron 94:1–54

    Article  CAS  Google Scholar 

  • Fischer WR (1987) Standard potentials (Eh°) of iron(III) oxides under reducing conditions. Z Pflanzenernähr Bodenk 150:286–289

    Article  CAS  Google Scholar 

  • Forester DW, Koon NC (1969) Mössbauer investigation of metamagnetic FeCO3. J Appl Phys 40:1316–1317

    Article  CAS  Google Scholar 

  • Frederichs T, von Dobeneck T, Bleil U, Dekkers MJ (2003) Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties. Phys Chem Earth 28:669–679

    Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong HL, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257

    Article  CAS  Google Scholar 

  • Ganguly B, Huggins FE, Feng Z, Huffman GP (1994) Anomalous recoilless fraction of 30-Å-diameter FeOOH particles. Phys Rev B 49:3036–3042

    Article  CAS  Google Scholar 

  • Golden DC, Turner FT, SittertzBhatkar H, Dixon JB (1997) Seasonally precipitated iron oxides in a vertisol of southeast Texas. Soil Sci Soc Am J 61:958–964

    Article  CAS  Google Scholar 

  • Govaert A, Dauwe C, Plinke P, De Grave E, De Sitter J (1976) A classfication of goethite minerals based on the Mössbauer behaviour. J Phys Coll 37:825–827

    Google Scholar 

  • Guelke M, von Blanckenburg F, Schoenberg R, Staubwasser M, Stuetzel H (2010) Determining the stable Fe isotope signature of plant-available iron in soils. Chem Geol 277:269–280

    Article  CAS  Google Scholar 

  • Hansel CM, Benner SG, Neiss J, Dohnalkova A, Kukkadapu RK, Fendorf S (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim Cosmochim Acta 67:2977–2992

    Article  CAS  Google Scholar 

  • Herbel M, Fendorf S (2006) Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem Geol 228:16–32

    Article  CAS  Google Scholar 

  • Houben G, Kaufhold S (2001) Estimating the surface area of iron oxihydroxides from infrared (IR) spectrometry data. Supplements Eur J Min 13:86, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Houben G, Kaufhold S (2011) Multi-method characterization of the ferrihydrite to goethite transformation. Clay Miner 46 (in press)

  • Icopini GA, Anbar AD, Ruebush SS, Tien M, Brantley SL (2004) Iron isotope fractionation during microbial reduction of iron: The importance of adsorption. Geology 32:205–208

    Article  CAS  Google Scholar 

  • Jang JH, Mathur R, Liermann LJ, Ruebush S, Brantley SL (2008) An iron isotope signature related to electron transfer between aqueous ferrous iron and goethite. Chem Geol 250:40–48

    Article  CAS  Google Scholar 

  • Jeon BH, Dempsey BA, Burgos WD (2003) Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environ Sci Technol 37:3309–3315

    Article  CAS  Google Scholar 

  • Johnson CM, Beard BL, Roden EE, Newman DK, Nealson KH (2004) Isotopic constraints on biogeochemical cycling of Fe. In: Johnson CM, Beard BL, Albarede F (eds), Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy & Geochemistry. Mineralogical Soc America, Washington, pp 359–408

  • Jones CA, Langner HW, Anderson K, McDermott TR, Inskeep WP (2000) Rates of microbially mediated arsenate reduction and solubilization. Soil Sci Soc Am J 64:600–608

    Article  CAS  Google Scholar 

  • Jones AM, Collins RN, Rose J, Waite TD (2009) The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochim Cosmochim Acta 73:4409–4422

    Article  CAS  Google Scholar 

  • Kaczorek D, Sommer M (2003) Micromorphology, chemistry, and mineralogy of bog iron ores from Poland. Catena 54:393–402

    Article  CAS  Google Scholar 

  • Kappler A, Johnson CM, Crosby HA, Beard BL, Newman DK (2010) Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. Geochim Cosmochim Acta 74:2826–2842

    Article  CAS  Google Scholar 

  • Kiczka M, Wiederhold JG, Frommer J, Kraemer S, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during proton- and ligand-promoted dissolution of primary phyllosilicates. Geochim Cosmochim Acta 74:3112–3128

    Article  CAS  Google Scholar 

  • Kiem R, Kögel-Knabner I (2002) Characterization of refractory organic carbon in particle-size fractions of arable soils: II. Organic carbon in relation to mineral surface area and iron oxides in fraction <6 μm. Org Geochem 33:1699–1713

    Article  CAS  Google Scholar 

  • Konhauser K (2007) Introduction to Geomicrobiology. Blackwell, London

    Google Scholar 

  • Lovley DR (1991) Magnetite formation during microbial dissimilatory iron reduction. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum Press, New York, pp 151–166

    Chapter  Google Scholar 

  • Madejova J, Keckes J, Paalkova H, Komadel P (2002) Identification of components in smectite/kaolinite mixtures. Clay Min 37:377–388

    Article  CAS  Google Scholar 

  • Manceau A, Drits VA (1993) Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Min 28:165–184

    Article  CAS  Google Scholar 

  • Mansfeldt T (2003) In situ long-term redox potential measurements in a dyked marsh soil. J Plant Nutr Soil Sci 166:210–219

    Article  CAS  Google Scholar 

  • Mansfeldt T (2004) Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols. J Plant Nutr Soil Sci 167:7–16

    Article  CAS  Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Article  CAS  Google Scholar 

  • McMillan SG, Schwertmann U (1998) Morphological and genetic relations between siderite, calcite and goethite in a Low Moor Peat from southern Germany. Eur J Soil Sci 49:283–293

    Article  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Min 7:317–327

    Article  Google Scholar 

  • Mikutta C, Mikutta R, Bonneville S, Wagner F, Voegelin A, Christl I, Kretzschmar R (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: characterization. Geochim Cosmochim Acta 72:1111–1127

    Article  CAS  Google Scholar 

  • Mikutta C, Wiederhold JG, Cirpka OA, Hofstetter TB, Bourdon B, Von Gunten U (2009) Iron isotope fractionation and atom exchange during sorption of ferrous iron to mineral surfaces. Geochim Cosmochim Acta 73:1795–1812

    Article  CAS  Google Scholar 

  • Miller AJ, Schuur EAG, Chadwick OA (2001) Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma 102:219–237

    Article  CAS  Google Scholar 

  • Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Patrick WH, Jugsujinda A (1992) Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci Soc Am J 56:1071–1073

    Article  CAS  Google Scholar 

  • Patrick WH, Khalid RA (1974) Phosphate release and sorption by soils and sediments—effect of aerobic and anaerobic conditions. Science 186:53–55

    Article  CAS  Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R, Larsen O (2005) Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta 69:3967–3977

    Article  CAS  Google Scholar 

  • Peretyazhko T, Sposito G (2005) Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim Cosmochim Acta 69:3643–3652

    Article  CAS  Google Scholar 

  • Poitrasson F, Halliday AN, Lee DC, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223:253–266

    Article  CAS  Google Scholar 

  • Ponnamperuma FN, Tianco EM, Loy T (1967) Redox equilibria in flooded soils: I. The iron hydroxide systems. Soil Sci 103:371–382

    Google Scholar 

  • Postma D (1981) Formation of siderite and vivianite and the pore-water composition of a recent bog sediment in Denmark. Chem Geol 31:225–244

    Article  CAS  Google Scholar 

  • Rancourt DG (1998) Mössbauer spectroscopy in clay science. Hyperfine Interact 117:3–38

    Article  CAS  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  CAS  Google Scholar 

  • Sah RN, Mikkelsen DS, Hafez AA (1989) Phosphorus behavior in flooded-drained soils.2. Iron transformation and phosphorus sorption. Soil Sci Soc Am J 53:1723–1729

    Article  CAS  Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2001) Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65:2487–2497

    Article  CAS  Google Scholar 

  • Schlichting E (1965) Die Raseneisenbildung in der nordwestdeutschen Podsol-Gley-Landschaft. Chemie der Erde 24:11–26

    CAS  Google Scholar 

  • Schneider W (1988) Iron hydrolysis and the biochemistry of iron—the interplay of hydroxide and biogenic ligands. Chimia 42:9–20

    CAS  Google Scholar 

  • Schoenberg R, von Blanckenburg F (2005) An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int J Mass Spectrom 242:257–272

    Article  CAS  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z Pflanzenernähr Düng Bodenk 105:194–202

    Article  CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Book series No.1, 2nd edn. Soil Sci Soc Am, Madison, USA, pp 379–438

  • Schwertmann U, Friedl J, Kyek A (2004) Formation and characterization of a continuous crystallinity series of synthetic ferrihydrites and their relation to FeOOH forms. Clays Clay Min 52:221–226

    Article  CAS  Google Scholar 

  • Shaw JN, Odom JW, Hajek BF (2003) Soils on quaternary terraces of the Tallapoosa River, central Alabama. Soil Sci 168:707–717

    Article  CAS  Google Scholar 

  • Srivastava KKP (1985) Effect of orbit-lattice interaction in Mössbauer studies: quadrupole splitting of 57Fe2+ in FeCO3. Phys Rev B 32:3282–3284

    Article  CAS  Google Scholar 

  • Stanjek H, Häusler W (2000) Quantifizierung silikatischer Tonminerale im Textur- und Pulverpräparat mit MacClayFit. In: Hermanns Stengele R, Plötze M (eds) Berichte der DTTG 7, pp 256–265

  • Staubwasser M, von Blanckenburg F, Schoenberg R (2006) Iron isotopes in the early marine diagenetic iron cycle. Geology 34:629–632

    Article  CAS  Google Scholar 

  • Stoops G (1983) SEM and light microscopic observations of minerals in bog-ores of the Belgian Campine. Geoderma 30:179–186

    Article  Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186

    Article  CAS  Google Scholar 

  • Teutsch N, von Gunten U, Porcelli D, Cirpka OA, Halliday AN (2005) Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochim Cosmochim Acta 69:4175–4185

    Article  CAS  Google Scholar 

  • Teutsch N, Schmid M, Muller B, Halliday AN, Burgmann H, Wehrli B (2009) Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos. Earth Planet Sci Lett 285:52–60

    Article  CAS  Google Scholar 

  • Thompson A, Chadwick OA, Rancourt DG, Chorover J (2006) Iron-oxide crystallinity increases during soil redox oscillations. Geochim Cosmochim Acta 70:1710–1727

    Article  CAS  Google Scholar 

  • Thompson A, Ruiz J, Chadwick OA, Titus M, Chorover J (2007) Rayleigh fractionation of iron isotopes during pedogenesis along a climate sequence of Hawaiian basalt. Chemical Geology 238:72–83

    Article  CAS  Google Scholar 

  • Thompson A, Rancourt DG, Chadwick OA, Chorover J (2011) Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochim Cosmochim Acta 75:119–133

    Article  CAS  Google Scholar 

  • van der Zee C, Roberts DR, Rancourt DG, Slomp CP (2003) Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology 31:993–996

    Article  Google Scholar 

  • van der Zee C, Slomp CP, Rancourt DG, De Lange GJ, Van Raaphorst W (2005) A Mössbauer spectroscopic study of the iron redox transition in eastern Mediterranean sediments. Geochim Cosmochim Acta 69:441–453

    Article  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  Google Scholar 

  • Wei SY, Liu F, Feng XH, Tan WF, Koopal LK (2011) Formation and transformation of iron oxide–kaolinite associations in the presence of iron(II). Soil Sci Soc Am J 75:45–55

    Article  CAS  Google Scholar 

  • Weyer S, Schwieters J (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom 226:355–368

    Article  CAS  Google Scholar 

  • Weyer S, Anbar AD, Brey GP, Munker C, Mezger K, Woodland AB (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264

    Article  CAS  Google Scholar 

  • Wiederhold JG (2006) Iron isotope fractionation in soils—from phenomena to process identification. PhD thesis. Diss. ETH no. 16849, 148 p. Zürich, Switzerland

  • Wiederhold JG, Teutsch N, Kraemer SM, Halliday AN, Kretzschmar R (2007a) Iron isotope fractionation during pedogenesis in redoximorphic soils. Soil Sci Soc Am J 71:1840–1850

    Article  CAS  Google Scholar 

  • Wiederhold JG, Teutsch N, Kraemer SM, Halliday AN, Kretzschmar R (2007b) Iron isotope fractionation in oxic soils by mineral weathering and podzolisation. Geochim Cosmochim Acta 71:5821–5833

    Article  CAS  Google Scholar 

  • Wiesli RA, Beard BL, Johnson CM (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chem Geol 211:343–362

    Article  CAS  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide-water interface. Environ Sci Technol 38:4782–4790

    Article  CAS  Google Scholar 

  • Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452

    Article  CAS  Google Scholar 

  • WRB, IUSS Working Group (2006) World reference base for soil resources 2006, 2nd edition, World Soil Resources Reports No. 103. FAO, Rome

  • Zachara JM, Kukkadapu RK, Fredrickson JK, Gorby YA, Smith SC (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol J 19:179–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

For the assistance in the field and laboratory, we are grateful to Karin Greef, Julia Hurraß, Katrin Matern, Kristof Dorau, and Nadine Gorican. Ambre Luguet, University of Bonn, kindly helped to keep the Neptune operational. Jan Wiederhold from ETH Zürich is thanked for the Fe salt in-house isotope standard, Carsten Münker from the University of Köln for the BIR-1 reference material, and Hendrik Kathrein from Lanxess, Germany, for the Bayferrox 920Z goethite. This study was funded by the DFG (German Research Foundation) under the contract number Ma 2143/8-1 granted to T. Mansfeldt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Mansfeldt.

Additional information

Responsible editor: Michael Kersten

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansfeldt, T., Schuth, S., Häusler, W. et al. Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties. J Soils Sediments 12, 97–114 (2012). https://doi.org/10.1007/s11368-011-0402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0402-z

Keywords

Navigation