Skip to main content

Advertisement

Log in

Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil

  • SPECTRO-MICROSCOPIC CHARACTERIZATION OF BIOGEOCHEMICAL INTERFACES IN SOIL
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Biogeochemical interfaces, the 3D association of minerals, soil organic matter, and biota, are hotspots of soil processes because they exhibit strong biological, physical, and chemical gradients. Biogeochemical interfaces have thicknesses from nanometers to micrometers and separate bulk immobile phases from mobile liquid or gaseous phases. The aim of this contribution is to review advanced microscopic and spectroscopic characterization techniques that allow for spatially resolved analysis of composition and properties of biogeochemical interfaces or their visualization.

Materials and methods

From the variety of techniques to study biogeochemical interfaces in soil, we focus on X-ray spectromicroscopy, nano-scale secondary ion mass spectrometry, atomic force microscopy, micro-X-ray tomography, and positron emission tomography. Beside an introduction into the respective method, we review published applications and give practical examples.

Results and discussion

The development of terrestrial soils involves the formation of biogeochemical interfaces as the result of the complex 3D interplay of primary and secondary minerals, soil organic matter together with soil biota. X-ray microscopy allows for the visualization of structures down to range of 10–30 nm and for the determination of binding states of elements. Nano-scale secondary ion mass spectrometry is capable of simultaneously analyzing up to seven secondary ion species to give the elemental and isotopic composition down to 50–150 nm. Atomic force microscopy enables to study the topography and mechanical properties (softness, elasticity, plasticity, deformability) of soil particle surfaces down to the nm scale. X-ray micro-tomography has been shown to visualize the interior of materials at the sub-micrometer scale successfully.

Conclusions

Introducing and adapting the discussed methods in soil science has increased the understanding of formation, properties, and functioning of biogeochemical interfaces in soil. A further challenging task is to utilize further promising techniques, e.g., advanced Raman techniques or atomic probe tomography with the highest spatial resolution for 3D compositional information of any microscopy technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ade H, Kilcoyne A, Tyliszczak T, Hitchcock P, Anderson E, Harteneck B, Rightor E, Mitchell G, Hitchcock A, Warwick T (2003) Scanning transmission X-ray microscopy at a bending magnet beamline at the Advanced Light Source. J Phys 104:3–8

    Google Scholar 

  • Ahrenholz B, Tölke J, Lehmann P, Peters A, Kaestner A, Krafczyk M, Durner W (2008) Prediction of capillary hysteresis in porous material using lattice Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv Water Res 31:1151–1173

    Article  Google Scholar 

  • Alvarez-Puebla RA, dos Santos Jr DS, Aroca RF (2007) SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials. Analyst 132:1210–1214

    Article  CAS  Google Scholar 

  • Attwood D (2000) Soft X-rays and extreme ultraviolet radiation—principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Bacquart T, Deve G, Ortega R (2010) Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy. Environ Res 110:413–416

    Article  CAS  Google Scholar 

  • Bargar JR, Fuller CC, Marcus MA, Brearley AJ, Perez de la Rosa M, Webb SM, Caldwell WA (2009) Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ. Geochim Cosmochim Acta 73:889–910

    Article  CAS  Google Scholar 

  • Bickmore BR, Hochella MF Jr, Bosbach D, Charlet L (1999) Methods for performing atomic force microscopy imaging of clay minerals in aqueous solutions. Clays Clay Miner 47:573–581

    Article  CAS  Google Scholar 

  • Bickmore BR, Bosbach D, Hochella MF Jr, Charlet L, Rufe E (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: implications for phyllosilicate edge surface structures and dissolution mechanisms. Amer Miner 86:411–423

    CAS  Google Scholar 

  • Bihannic I, Michot LJ, Lartiges BS, Vantelon D, Labille J, Thomas F, Susini J, Salome M, Fayard B (2001) First direct visualization of oriented mesostructures in clay gels by synchrotron-based X-ray fluorescence microscopy. Langmuir 17:4144–4147

    Article  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  • Bosbach D, Charlet L, Bickmore B, Hochella MF Jr (2000) The dissolution of hectorite: in situ, real-time observations using atomic force microscopy. Amer Miner 85:1209–1216

    CAS  Google Scholar 

  • Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Ann Rev Biophys 38:53–74

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brzoska J-B, Flin F, Lesaffre B, Coléou C, Lamboley P, Delesse J-F, Le Saëc B, Vignoles G (2001) Computation of the surface area of natural snow 3D images from X-ray tomography: two approaches. Image Anal Stereol 20:306–312

    Google Scholar 

  • Budich C, Neugebauer U, Popp J, Deckert V (2008) Cell wall investigations utilizing tip-enhanced Raman scattering. J Microsc 229:533–539

    Article  CAS  Google Scholar 

  • Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  • Camesano T, Liu Y, Datta M (2007) Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv Water Res 30:1470–1491

    Article  CAS  Google Scholar 

  • Cerezo A, Clifton PH, Galtrey MJ, Humphreys CJ, Kelly TF, Larson DJ, Lozano-Perez CS, Marquis EA, Oliver RA, Sha G, Thompson K, Zandbergen M, Alvis RL (2007) Atom probe tomography today. Mater Today 10:36–42

    Article  CAS  Google Scholar 

  • Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40:240–243

    Article  CAS  Google Scholar 

  • Chen Y, Lo T, Chu Y, Yi J, Liu C, Wang J, Wang C, Chiu C, Hua T, Hwu Y, Shen Q, Yin G, Liang K, Lin H, Je J, Margaritondo G (2008) Full-field hard X-ray microscopy below 30 nm: a challenging nanofabrication achievement. Nanotechnology 19:395302

    Article  CAS  Google Scholar 

  • Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326

    Article  CAS  Google Scholar 

  • Clode PL, Stern RA, Marshall AT (2007) Subcellular imaging of isotopically labeled carbon compounds in a biological sample by ion microprobe (NanoSIMS). Microsc Res Techniq 70:220–229

    Article  CAS  Google Scholar 

  • Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB III, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757

    Article  CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34:1707–1745

    Article  CAS  Google Scholar 

  • Deckert-Gaudig T, Deckert V (2010) Tip-enhanced Raman scattering (TERS) and high-resolution bio nano-analysis—a comparison. Phys Chem Chem Phys 12:12040–12049

    Article  CAS  Google Scholar 

  • de Winter DAM, Schneijdenberg CTWM, Lebbink MN, Lich B, Verkleij AJ, Drury MR, Humbel BM (2009) Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233:372–383

    Article  Google Scholar 

  • Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, Brandes JA (2008) Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320:652–655

    Google Scholar 

  • Dong H, Jaisi DP, Kim J, Zhang G (2009) Microbe–clay mineral interactions. Amer Miner 94:1505–1519

    Article  CAS  Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  • Duiker SW, Rhoton FE, Torrent J, Smeck NE, Lal R (2003) Iron (hydr)oxide crystallinity effects on soil aggregation. Soil Sci Soc Am J 67:606–611

    Article  CAS  Google Scholar 

  • Eusterhues K, Wagner FE, Häusler W, Hanzlik M, Knicker H, Totsche KU, Kögel-Knabner I, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mössbauer spectroscopy. Environ Sci Technol 42:7891–7897

    Article  CAS  Google Scholar 

  • Feser M, Hornberger B, Jacobsen C, De Geronimo G, Rehak P, Hol P, Strueder L (2006) Integrating silicon detector with segmentation for scanning transmission X-ray microscopy. Nucl Instrum Methods Phys Res A 565:841–854

    Article  CAS  Google Scholar 

  • Fischer P, Kim D-H, Chao W, Liddle JA, Anderson EH, Attwood DT (2006) Soft X-ray microscopy of nanomagnetism. Mater Today 9:26–33

    Article  CAS  Google Scholar 

  • Fisher TE, Marszalek PE, Oberhauser AF, Carrion-Vazquez M, Fernandez JM (1999) The micro-mechanics of single molecules studied with atomic force microscopy. J Physiol-London 520:5–14

    Article  CAS  Google Scholar 

  • Flechsig U, Quitmann U, Raabe J, Boege M, Fink R, Ade H (2006) The PolLux microspectroscopy beamline at the Swiss Light Source. AIP Conf Proc 879:505–508

    Article  Google Scholar 

  • Floss C, Stadermann FJ, Bradley JP, Dai ZR, Bajt S, Graham G, Lea AS (2006) Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim Cosmochim Acta 70:2371–2399

    Article  CAS  Google Scholar 

  • Franz M, Kasperl S (2010) Synchronous artifact reduction in industrial computed tomography. Techn Messen 77:616–623

    Article  Google Scholar 

  • Giessibl FJ, Quate CF (2006) Exploring the nanoworld with atomic force microscopy. Phys Today 59:44–50

    Article  CAS  Google Scholar 

  • Gleber SC, Thieme J, Chao W, Fischer P (2009) Stereo soft X-ray microscopy and elemental mapping of haematite and clay suspensions. J Microsc 235:199–208

    Article  CAS  Google Scholar 

  • Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  CAS  Google Scholar 

  • Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspers M (2010) Organic structure determination using atomic resolution scanning probe microscopy. Nature Chem 765:821–825

    Article  CAS  Google Scholar 

  • Grovenor CRM, Smart KE, Kilburn MR, Shore B, Dilworth JR, Martin B, Hawes C, Rickaby REM (2006) Specimen preparation for NanoSIMS analysis of biological materials. Appl Surf Sci 252:6917–6924

    Article  CAS  Google Scholar 

  • Guerquin-Kern J-L, Wu T-D, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724:228–238

    Article  CAS  Google Scholar 

  • Hafida Z, Caron J, Angers DA (2007) Pore occlusion by sugars and lipids as a possible mechanism of aggregate stability in amended soils. Soil Sci Soc Am J 71:1831–1839

    Article  CAS  Google Scholar 

  • Halvorson RA, Vikesland PJ (2010) Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ Sci Technol 44:7749–7755

    Article  CAS  Google Scholar 

  • Henke B, Gullikson E, Davis J (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom Data Nucl Data Tables 54:181–342

    Article  CAS  Google Scholar 

  • Hering K, Cialla D, Ackermann K, Dörfer D, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124

    Article  CAS  Google Scholar 

  • Herman G (1980) Image reconstruction from projections. Academic, New York

    Google Scholar 

  • Herman GT (1979) Correction for beam hardening in computed tomography. Phys Med Biol 24:81–106

    Article  CAS  Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode PL, Pettridge J, Kilburn ML, Murphy DV, O’Donnell AG, Stockdale AE (2007a) Nano-scale secondary ion mass spectrometry—a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem 39:1835–1850

    Article  CAS  Google Scholar 

  • Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O’Donnell AG, Murphy DV (2007b) A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Commun Mass Sp 21:29–34

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  CAS  Google Scholar 

  • Hinsinger P, Glyn Bengough A, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hoppe P (2006) NanoSIMS: a new tool in cosmochemistry. Appl Surf Sci 252:7102–7106

    Article  CAS  Google Scholar 

  • Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  • Hornberger B, de Jonge MD, Feser M, Hol P, Holzner C, Jacobsen C, Legnini D, Paterson D, Rehak P, Strueder L, Vogt S (2008) Differential phase contrast with a segmented detector in a scanning X-ray microprobe. J Synchrotron Rad 15:355–362

    Article  CAS  Google Scholar 

  • Huber F, Enzmann F, Wenka A, Bouby M, Dentz M, Schäfer T (2011) Tracer and quantum dots migration in a μCT scanned fracture: Experiments and 3D CFD modeling. Environ Sci Technol (in press)

  • Inoue K, Huang PM (1990) Perturbation of imogolite formation by humic substances. Soil Sci Soc Am J 54:1490–1497

    Article  CAS  Google Scholar 

  • Ireland TR (2004) SIMS measurements of stable isotopes. In: de Groot PA (ed) Handbook of stable isotope analytical techniques. Elsevier, Amsterdam, pp 652–691

    Google Scholar 

  • Jacobsen C, Flynn G, Wirick S, Zimba C (2000) Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J Microsc 197:173–184

    Article  CAS  Google Scholar 

  • Jandt KD (1998) Developments and perspectives of scanning probe microscopy (SPM) on organic materials systems. Mater Sci Eng R 21:221–295

    Article  Google Scholar 

  • Jandt KD (2001) Atomic force microscopy of biomaterials surfaces and interfaces. Surf Sci 491:303–332

    Article  CAS  Google Scholar 

  • Jandt KD (2007) Evolutions, revolutions and trends in biomaterials science—a perspective. Adv Eng Mater 9:1035–1050

    Article  Google Scholar 

  • Jarvis RM, Brooker A, Goodacre R (2006) Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss 132:281–292

    Article  CAS  Google Scholar 

  • Kaulich B, Bacescu D, Cocco D, Susini J, David C, DiFabrizio E, Cabrini S, Morrison G, Thieme J, Kiskinova M (2003) Twinmic: a European twin microscope station combining full-field imaging and scanning microscopy. J Phys IV 104:103–107

    Google Scholar 

  • Kaznatcheev K, Karunakarana C, Lanke U, Urquhar S, Obst M, Hitchcock A (2007) Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Instrum Methods Phys Res A 582:96–99

    Article  CAS  Google Scholar 

  • Kelly TF, Miller MK (2007) Invited review article: atom probe tomography. Rev Sci Instrum 78:031101

    Article  CAS  Google Scholar 

  • Kelly TF, Nishikawa O, Panitz JA, Prosa TJ (2009) Prospects for nanobiology with atom-probe tomography. MRS Bull 34:744–749

    CAS  Google Scholar 

  • Kirz J, Jacobsen C, Howells M (1995) Soft-X-ray microscopes and their biological applications. Q Rev Biophys 28:33–130

    Article  CAS  Google Scholar 

  • Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kotula PG, Keenan MR, Michael JR (2006) Tomographic spectral imaging with multivariate statistical analysis: comprehensive 3D microanalysis. Microsc Microanals 12:36–48

    Article  CAS  Google Scholar 

  • Krumm M, Kasperl S, Franz M (2008) Reducing non-linear artifacts of multi-material objects in industrial 3D computed tomography. NDT&E Int 41:242–251

    Google Scholar 

  • Kulenkampff J, Gründig M, Richter M, Enzmann F (2008) Evaluation of positron-emission-tomography for visualization of migration processes in geomaterials. Phys Chem Earth 33:937–942

    Google Scholar 

  • Kuhlman KR, Martens RL, Kelly TF, Evans ND, Miller MK (2001) Fabrication of specimens of metamorphic magnetite crystals for field ion microscopy and atom probe microanalysis. Ultramicroscopy 89:169–176

    Article  CAS  Google Scholar 

  • Kurek E (2002) Microbial mobilization of metals from soil minerals under aerobic conditions. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley, Chichester, pp 189–225

    Google Scholar 

  • Kuwahara Y (2006) In-situ AFM study of smectite dissolution under alkaline conditions at room temperature. Amer Miner 91:1142–1149

    Article  CAS  Google Scholar 

  • Kwong NKKF, Huang PM (1981) Comparison of the influence of tannic acid and selected low-molecular-weight organic acids on precipitation products of aluminum. Geoderma 26:179–193

    Google Scholar 

  • Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20

    Article  Google Scholar 

  • Lehmann J, Liang B, Solomon D, Lerotic M, Luizão F, Kinyangi J, Schäfer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochem Cy 19:GB1013

    Article  CAS  Google Scholar 

  • Lehmann P, Berchtold M, Ahrenholz B, Tölke J, Kaestner A, Krafczyk M, Flühler H, Künsch HR (2008) Impact of geometrical properties on permeability and fluid phase distribution in porous media. Adv Water Res 31:1188–1204

    Article  Google Scholar 

  • Lešer V, Milani M, Tatti F, Tkalec ŽP, Štrus J, Drobne D (2010) Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research. Protoplasma 246:41–48

    Article  Google Scholar 

  • Li T, Wu T-D, Mazéas L, Toffin L, Guerquin-Kern J-L, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    Article  CAS  Google Scholar 

  • Lombi E, Sosni J (2009) Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320:1–35

    Article  CAS  Google Scholar 

  • Lozano-Perez S, Schröder M, Yamada T, Terachi T, English CA, Grovenor CRM (2008) Using NanoSIMS to map trace elements in stainless steels from nuclear reactors. Appl Surf Sci 255:1541–1543

    Article  CAS  Google Scholar 

  • Machlin ES, Freilich A, Agrawal DC, Burton JJ, Briant CL (1975) Field-ion microscopy of biomolecules. J Microsc 104:127–168

    Article  CAS  Google Scholar 

  • Macht F, Eusterhues K, Pronk GJ, Totsche KU (2011) Specific surface area, of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl Clay Sci 53:20–26

    Article  CAS  Google Scholar 

  • Masue-Slowey Y, Kocar BD, Bea Jofré SA, Mayer KU, Fendorf S (2011) Transport implications resulting from internal redistribution of arsenic and iron within constructed soil aggregates. Environ Sci Technol 45:582–588

    Article  CAS  Google Scholar 

  • Matyjasik M, Summers S, Manecki M, Inglefield C (2009) The alteration of calcite surface exposed to arctic soil environment—AFM study. Geochim Cosmochim Acta 73:A850

    Google Scholar 

  • Maurice P, Forsythe J, Hersman L, Sposito G (1996) Application of atomic-force microscopy to studies of microbial interactions with hydrous Fe(III)-oxides. Chem Geol 132:33–43

    Article  CAS  Google Scholar 

  • McCarthy JF, Ilavsky J, Jastrow JD, Mayer LM, Perfect E, Zhuang J (2008) Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochim Cosmochim Acta 72:4725–4744

    Article  CAS  Google Scholar 

  • McNulty I, Eyberger C, Lai B (2011) The 10th international conference on X-ray Microscopy. AIP Conf Proc 1365

  • Meakin P, Tartakovsky AM (2009) Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev Geophys 47:RG3002

    Article  Google Scholar 

  • Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA (2009) Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 45:1104–1116

    Article  Google Scholar 

  • Mitrea G, Thieme J, Guttmann P, Heim S, Gleber S (2008) X-ray spectromicroscopy with the scanning transmission X-ray microscope at BESSY II. J Synchrotron Rad 15:26–35

    Article  CAS  Google Scholar 

  • Monga O, Ngom FN, Delerue JF (2009) Representing geometric structures in 3D tomography soil images: application to pore-space modeling. Computat Geosci 33:1140–1161

    Google Scholar 

  • Monreal CM, Sultan Y, Schnitzer M (2010) Soil organic matter in nano-scale structures of a cultivated Black Chernozem. Geoderma 159:237–242

    Article  CAS  Google Scholar 

  • Mueller CW, Kölbl A, Hoeschen C, Hillion F, Heister K, Herrmann AM, Kögel-Knabner I (2011) Submicron scale imaging of soil organic matter dynamics using NanoSIMS—from single particles to intact aggregates. Org Geochem. doi:10.1016/j.orggeochem.2011.06.003

  • Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. P Natl Acad Sci 105:17861–17866

    Article  CAS  Google Scholar 

  • Nagy KL, Cygan RT, Hanchar JM, Sturchio NC (1999) Gibbsite growth kinetics on gibbsite, kaolinite, and muscovite substrates: atomic force microscopy evidence for epitaxy and an assessment of reactive surface area. Geochim Cosmochim Acta 63:2337–2351

    Article  CAS  Google Scholar 

  • Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis. Chemphyschem 8:124–137

    Article  CAS  Google Scholar 

  • Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Omoike A, Chen GL, Van Loon GW, Horton JH (1998) Investigation of the surface properties of solid-phase hydrous aluminum oxide species in simulated wastewater using atomic force microscopy. Langmuir 14:4731–4736

    Article  CAS  Google Scholar 

  • Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv Water Res 30:1505–1527

    Article  Google Scholar 

  • Petry R, Schmitt M, Popp J (2003) Raman spectroscopy—a prospective tool in the life sciences. Chemphyschem 4:14–30

    Article  CAS  Google Scholar 

  • Pohl R (1967) Einführung in die Physik, 3. Teil—Optik und Atomphysik, 12th edn. Springer, Berlin, p 180

    Google Scholar 

  • Porter ML, Wildenschild D (2010) Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study. Computat Geosci 14:15–30

    Article  Google Scholar 

  • Prietzel J, Thieme J, Eusterhues K, Eichert D (2007) Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES,•-XANES). Eur J Soil Sci 58:1027–1041

    Google Scholar 

  • Prietzel J, Botzaki A, Tyufekchieva N, Brettholle M, Thieme J, Klysubun W (2011) Sulfur speciation in soil by S K-edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting. Environ Sci Technol 45:2878–2886

    Article  CAS  Google Scholar 

  • Quiney HM, Peele AG, Cai Z, Paterson D, Nugent KA (2006) Diffractive imaging of highly focused X-ray fields. Nat Phys 2:101–104

    Article  CAS  Google Scholar 

  • Quitmann C, David C, Nolting F, Pfeiffer F, Stampanoni M (2009) 9th international conference on X-ray microscopy. J Phys: Conf Ser 186

  • Requena G, Cloetens P, Altendorfer W, Poletti C, Tolnai D, Warchomicka F, Degischer H (2009) Scripta Mater 61:760–763

    Article  CAS  Google Scholar 

  • Richter M, Gründig M, Zieger K, Seese A (2003) Fundamentals of spatial resolved transport in soil columns by positron emission tomography. In: Schulz H-D, Hadeler A (eds) Geochemical processes in soil and groundwater. Wiley-VCH, Weinheim, pp 539–550

    Google Scholar 

  • Richter M, Gründig M, Zieger K, Seese A, Sabri O (2005) Positron emission tomography for modelling of geochemical transport processes in clay. Radiochim Acta 93:643–651

    Article  CAS  Google Scholar 

  • Sano Y, Shirai K, Takahata N, Hirata T, Sturchio NC (2005) Nano-SIMS analysis of Mg, Sr, Ba and U in natural calcium carbonate. Anal Sci 21:1091–1097

    Article  CAS  Google Scholar 

  • Saunders M, Kong C, Shaw JA, Macey DJ, Clode PL (2009) Characterization of biominerals in the radula teeth of the chiton, Acanthopleura hirtosa. J Struct Biol 167:55–61

    Article  CAS  Google Scholar 

  • Schiffbauer JD, Xiao S (2009) Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early Eukaryotic organisms. Palaios 24:616–626

    Article  Google Scholar 

  • Schneider G, Guttmann P, Heim S, Rehbein S, Mueller F, Nagashima K, Heymann B, Müller W, McNally J (2010) Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods 7:985–988

    Article  CAS  Google Scholar 

  • Schlüter S, Weller U, Vogel H-J (2010) Segmentation of X-ray microtomography images of soil using gradient masks. Computat Geosci 36:1246–1251

    Article  Google Scholar 

  • Schmid T, Yeo B-S, Leong G, Stadler J, Zenobi R (2009) Performing tip-enhanced Raman spectroscopy in liquids. J Raman Spectrosc 40:1392–1399

    Article  CAS  Google Scholar 

  • Sedlmair J, Gleber S, Peth C, Mann K, Niemeyer J, Thieme J (2011) Characterization of refractory organic substances by NEXAFS using a compact X-ray source. J Soil Sediment, doi:10.10007/s11368-011-0385-9

  • Seguin V, Gagnon C, Courchesne F (2004) Changes in water extractable metals, pH and organic carbon concentrations at the soil–root interface of forested soils. Plant Soil 260:1–17

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryse S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31

    Google Scholar 

  • Solomon D, Lehmann J, Lobe I, Martinez CE, Tveitnes S, Du Preez CC, Amelung W (2005) Sulphur speciation and biogeochemical cycling in long-term arable cropping of subtropical soils: evidence from wet-chemical reduction and S K-edge XANES spectroscopy. Eur J Soil Sci 56:621–634

    Article  CAS  Google Scholar 

  • Smits MM, Bonneville S, Haward S, Leake JR (2008) Ectomycorrhizal weathering, a matter of scale? Mineral Mag 72:131–134

    Article  CAS  Google Scholar 

  • Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136

    Article  Google Scholar 

  • Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin

  • Succi S (2001) The Lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, New York

    Google Scholar 

  • Sutton SR, Flynn G, Rivers M, Newville M, Eng P (2000) X-ray fluorescence microtomography of individual interplanetary dust particles. Lunar Planet Sci XXXI:CD ROM #1857

  • Takman P, Stollberg H, Johansson G, Holmberg A, Lindblom M, Hertz H (2007) High-resolution compact X-ray microscopy. J Microsc 226:175–181

    Article  CAS  Google Scholar 

  • Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F (2008) High-resolution scanning X-ray diffraction microscopy. Science 321:379–382

    Article  CAS  Google Scholar 

  • Thieme J, Schneider G, Knoechel C (2003) X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution. Micron 34:339–344

    Article  Google Scholar 

  • Thieme J, McNulty I, Vogt S, Paterson D (2007) X-ray spectromicroscopy—a tool for environmental sciences. Environ Sci Technol 41:6885–6889

    Article  CAS  Google Scholar 

  • Thieme J, Sedlmair J, Gleber S-C, Prietzel J, Coates J, Eusterhues K, Abbt-Braun G, Salome M (2010) X-ray spectro-microscopy in soil and environmental sciences. J Synchrotron Radiat 17:149–157

    Article  CAS  Google Scholar 

  • Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel H-J (2010) Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sci 173:88–99

    Article  CAS  Google Scholar 

  • Turek S (1999) Efficient solvers for incompressible flow problems: an algorithmic and computational approach. Springer, Heidelberg

    Book  Google Scholar 

  • Van de Casteele E, Van Dyck D, Sijbers J, Raman E (2002) An energy-based beam hardening model in tomography. Phys Med Biol 47:4181–4190

    Article  Google Scholar 

  • Van de Casteele E, Van Dyck D, Sijbers J, Raman E (2004) A model-based correction method for beam hardening artefacts in X-ray microtomography. J X-ray Sci Technol 12:43–57

    Google Scholar 

  • Vogel H-J, Weller U, Schlüter S (2010) Quantification of soil structure based on Minkowski functions. Computat Geosci 36:1239–1245

    Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Article  CAS  Google Scholar 

  • Wang Y, Jacobsen C, Maser J, Osanna A (2000) Soft X-ray microscopy with a cryo scanning transmission X-ray microscope: II. Tomography. J Microsc 197:80–93

    Article  CAS  Google Scholar 

  • Warwick T, Franck K, Kortright JB, Meigs G, Moronne M, Myneni S, Rotenberg E, Seal S, Steele WF, Ade H, Garcia A, Cerasari S, Delinger J, Hayakawa S, Hitchcock AP, Tyliszczak T, Kikuma J, Rightor EG, Shin HJ, Tonner BP (1998) A scanning transmission X-ray microscope for materials science spectromicroscopy at the advanced light source. Rev Sci Instrum 69:2964–2973

    Article  CAS  Google Scholar 

  • Weber PK, Graham GA, Teslich NE, Moberly Chan W, Ghosal S, Leighton TJ, Wheeler KE (2010) NanoSIMS imaging of Bacillus spores sectioned by focused ion beam. J Microsc 238:189–199

    Article  CAS  Google Scholar 

  • Whalley WR, Riseley B, Leeds-Harrison PB, Bird NRA, Leech PK, Adderley WP (2005) Structural difference between bulk and rhizosphere soil. Eur J Soil Sci 56:353–360

    Article  Google Scholar 

  • Wiesemann U, Thieme J, Guttmann P, Frueke R, Rehbein S, Niemann B, Rudolph D, Schmahl G (2003) First results of the new scanning transmission X-ray microscope at BESSY-II. J Phys IV 104:95–98

    Google Scholar 

  • Wilhein T, Kaulich B, Di Fabrizio E, Romanato F, Cabrini S, Susini J (2001) Differential interference contrast X-ray microscopy with submicron resolution. Appl Phys Lett 78:2082–2084

    Article  CAS  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  Google Scholar 

  • Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

    Article  CAS  Google Scholar 

  • Wolter H (1952) Spiegelsysteme fallenden Einfalls als abbildende Optiken für Röntgenstrahlen. Ann Phys 6:94–114

    Article  Google Scholar 

  • Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem Phys Lett 472:1–13

    Article  CAS  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organisation in the soil–microbe complex. Science 304:1634–1637

    Article  CAS  Google Scholar 

  • Young IM, Crawford JW, Nunan N, Otten W, Spiers A (2008) Microbial distribution in soils: physics and scaling. Adv Agron 100:81–121

    Article  Google Scholar 

  • Zhang G, Dong H, Jiang H, Kukkadapu RK, Kim J, Eberl D, Xu Z (2009a) Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. Amer Miner 94:1049–1058

    Article  CAS  Google Scholar 

  • Zhang WH, Cui X, Martin OJF (2009b) Local field enhancement of an infinite conical metal tip illuminated by a focused beam. J Raman Spectrosc 40:1338–1342

    Article  CAS  Google Scholar 

  • Zhang M, Ginn BR, Dichristina TJ, Stack AG (2010) Adhesion of Shewanella oneidensis MR-1 to iron (oxy)(hydr)oxides: microcolony formation and isotherm. Environ Sci Technol 44:1602–1609

    Article  CAS  Google Scholar 

  • Zhang S, Kent DB, Elbert DC, Shi Z, Davis JA, Veblen DR (2011) Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer. J Contam Hydrol 124:57–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft for establishing and continuing the priority program SPP1315 “Biogeochemical Interfaces in Soil”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Rennert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennert, T., Totsche, K.U., Heister, K. et al. Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil. J Soils Sediments 12, 3–23 (2012). https://doi.org/10.1007/s11368-011-0417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0417-5

Keywords

Navigation