Skip to main content
Log in

Sulfate transport and release in technogenic soil substrates: experiments and numerical modeling

  • IUSS SUITMA 6 INTERNATIONAL SYMPOSIUM 2011
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

In Berlin and many other cities, technogenic soil substrates from World War II and building and construction debris, in general, play an important role for soil formation and solute transport in the vadose zone. The largest debris landfill in Berlin is the Teufelsberg. Sulfate release from the landfill poses threats to groundwater quality. The scope of this study is to determine and model the processes controlling sulfate release from soils containing construction rubble.

Materials and methods

Column leaching experiments were conducted to analyze sulfate mobilization from Teufelsberg topsoil material. Flow interruptions of 1 and 7 days were applied. Sulfate release was modeled using a geochemical simulation tool (HP1). The model considered water flux, solute transport, and precipitation/dissolution with first-order kinetics.

Results and discussion

Sulfate release increased after flow interruptions, although bromide breakthrough indicated physical equilibrium of transport processes. Hence, kinetically limited solution/dissolution of sulfate is assumed. The model was applicable for qualitative description of our experimental results. The estimated equilibrium concentrations of sulfate were one to two orders of magnitude smaller than expected according to the equilibrium constant of gypsum.

Conclusions

It is assumed that the mobilization and transport of sulfate from debris soil material can be described by an effective model. If sulfate release and transport from soils containing debris is modeled using literature values of thermodynamic constants for gypsum, sulfate concentrations will be overestimated by one to two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Barrak K, Rowell D (2006) The solubility of gypsum in calcareous soils. Geoderma 136(3):830–837

    Article  CAS  Google Scholar 

  • Bock E (1961) On the solubility of anhydrous calcium sulfate and of gypsum in concentrated solutions of sodium chloride at 25 °C, 30 °C, 40 °C, and 50 °C. Can J Chem Eng 39(9):1746–1751

    Article  CAS  Google Scholar 

  • Davies C (1962) Ion association. Vol. 30. Butterworths, London

    Google Scholar 

  • EU directive for drinking water (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption

  • Fugro Consult GmbH (2006) Qualität des oberflächennahen Grundwassers. Senatsverwaltung für Stadtentwicklung und Umweltschutz, Berlin

    Google Scholar 

  • Heizer WD, Sandler RS, Seal E Jr, Murray SC, Busby M, Schliebe BG, Pusek SN (1997) Intestinal effects of sulfate in drinking water on normal human subjects. Dig Dis Sci 42(5):1055–1061

    Article  CAS  Google Scholar 

  • Jacques D, Šimůnek J (2005) User manual of the multicomponent variably-saturated flow and transport model HP1, description, verification and examples, version 1.0, SCK•CEN-BLG-998, Waste and Disposal, SCK•CEN, Mol, Belgium, 79 pp

  • Jang YC, Townsend T (2001) Sulfate leaching from recovered construction and demolition debris fines. Adv Environ Res 5:203–217

    Article  CAS  Google Scholar 

  • Jang YC, Townsend T (2003) Effect of waste depth on leachate quality from laboratory construction and demolition debris landfills. Environ Eng Sci 20(3):183–196

    Article  CAS  Google Scholar 

  • Keren R, Kauschansky P (1981) Coating of calcium carbonate on gypsum particle surfaces. Soil Sci Soc Am J 45(6):1242–1244

    Article  CAS  Google Scholar 

  • Kuechler R, Noack K, Zorn T (2004) Investigation of gypsum dissolution under saturated and unsaturated water conditions. Ecol Model 176(1–2):1–14

    Article  CAS  Google Scholar 

  • Lahr J, Lucka M, Zanoth S (2007) Diplomkartierung—Stoffbestand und physikalische Eigenschaften von Trümmeraufschüttungen in Berlin. Technische Universität Berlin, Berlin

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Blackburn, Caldwell

    Google Scholar 

  • Nehls T, Rokia S, Mekiffer B, Schwartz C, Wessolek G (2012) Contribution of bricks to urban soil properties. J Soils Sediments. doi:10.1007/s11368-012-0559-0

  • Nissing W (2004) Korrosion und Korrosionsschutz in Wasseraufbereitungsanlagen, in: Wasseraufbereitung—Grundlagen und Verfahren. Oldenbourg Industrieverlag, München

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry—chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Sudmalis M, Sheikholeslami R (2000) Coprecipitation of CaCO3 and CaSO4. Can J Chem Eng 78(1):21–31

    Article  CAS  Google Scholar 

  • Toride, N, Leij FJ, van Genuchten MT (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0, Research Report No. 137, US Salinity Laboratory, USDA, ARS, Riverside, CA

  • Wisotzky F (2011) Angewandte Grundwasserchemie, Hydrogeologie und hydrogeochemische Modellierung—Grundlagen, Anwendungen und Problemlösungen. Springer, Heidelberg Dordrecht London New York

    Book  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality; 4th edition

Download references

Acknowledgments

We thank Christine Ehrlicher, Andreas, and Till for hours spent in the lab and Dr. Enrico Hamann for great help with the chemical model. We thank the reviewers for profound discussions on the applicability of numerical modeling and the Deutsche Forschungsgesellschaft (WE 1125/26-1) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Schonsky.

Additional information

Responsible editor: Jean Louis Morel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonsky, H., Peters, A., Lang, F. et al. Sulfate transport and release in technogenic soil substrates: experiments and numerical modeling. J Soils Sediments 13, 606–615 (2013). https://doi.org/10.1007/s11368-012-0615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0615-9

Keywords

Navigation