Skip to main content

Advertisement

Log in

pH-dependent reactive transport of uranium(VI) in unsaturated sand

  • SOILS, SEC 4 • ECOTOXICOLOGY • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Uranium contamination of subsurface environments was once thought to be an isolated occurrence, mostly at production sites. But recent evidence has shown that the presence of uranium in phosphate fertilizers has caused massive amounts of this element to be released worldwide. Concerns are related to uranium movement to groundwater supplies and its significant toxicological risks to human populations. Information is direly needed on how geochemical processes control uranium transport in the vadose zone.

Materials and methods

Laboratory experiments were performed to investigate the effects of the pH of the soil solution on the reactive transport of uranium(VI) in the vadose zone. The uranium solution was prepared by dilution of a 10−3 M stock solution of uranium perchlorate, (UO2(ClO4)2), with DI water. Two U(VI) solutions were prepared at concentrations of 2 × 10−6 M at pH 6 and 11 and were percolated under steady-state conditions through columns filled with sand. The convective-dispersion equation (CDE) was used to analyze the tracer and uranium breakthrough curves resulting from the column experiments. The program CXTFIT was used to estimate the transport parameters of equilibrium and nonequilibrium (i.e., two-site and mobile-immobile) models applied to the experimental data.

Results and discussion

Comparison of U(VI) breakthrough behavior at pH 6 with that of a nonreactive tracer indicated that U(VI) transport was significantly retarded, and about 52 % of the added U(VI) adsorbed to the quartz sand, likely in the cationic forms UO2OH+ and UO 2 +2 . The adsorption was reversible upon the addition of deionized water. At pH 11, the U(VI) breakthrough curve increased gradually and reached a plateau value C/C 0 oscillating between 72 and 82 %. Upon reaction, Si was released from the dissolution of quartz sand, which allowed the possible transport of U(VI) following precipitation of a U(VI) containing solid, such as uranyl-silicate minerals, or sorption of U(VI) onto silica colloids. Two-site and mobile-immobile (MIM) models suggested an influence of either rate-limited mass transfer processes or immobile/mobile water partitioning in U(VI) reactive transport.

Conclusions

The reactive transport of U(VI) governed by adsorption-desorption processes, precipitation, and complexation reactions in which kinetic behaviors are controlled by pH, solution chemistry, and heterogeneous flow regime impacts the mobility of U(VI). The column transport experiments indicated that under geochemical conditions and vadoze zone processes (preferential flow) that favor the mobility of U(VI), dissolved- and colloidal-phase associations of U(VI) may be transported rapidly and in high concentrations from the soil surface to the groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelouas A, Lutze W, Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. J Contam Hydrol 34:343–361

    Article  CAS  Google Scholar 

  • Aharoni C, Sparks DL (1991) Kinetics of soil chemical processes – A theoretical treatment. In: Sparks DL, Suarez DL (eds) Rate of soil chemical processes. Soil Sci Soc Am Spec Publ 27, Soil Sci Soc Am Inc, Madison, WI, pp 1–18

  • Andersson K, Torstenfelt B, Allard B (1982) Sorption behavior of long-lived radionuclides in igneous rock. In: International Atomic Energy Agency, the Commission of the European Communities and the OECD Nuclear Energy Agency (ed) Environmental migration of long-lived radionuclides, Vienna, Austria, pp 111–131

  • Arai Y, Marcus MK, Tamura N, Davis JA, Zachara JM (2007) Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ Sci Technol 41:4633–4639

    Article  CAS  Google Scholar 

  • Arnold T, Zorn T, Bernhard G, Nitsche H (1998) Sorption of uranium(VI) onto phyllite. Chem Geol 151:129–141

    Article  CAS  Google Scholar 

  • Arnold T, Zorn T, Zänker H, Bernhard G, Nitsche H (2001) Sorption behavior of U(VI) on phyllite: experiments and modeling. J Contam Hydrol 47:219–231

    Article  CAS  Google Scholar 

  • Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Bernhard G, Nitsche H (2002) Humic colloid-borne migration of uranium in sand columns. J Contam Hydrol 58:1–12

    Article  CAS  Google Scholar 

  • Baik MH, Hahn PS (2001) Experimental study on uranium sorption onto silica colloids: effects of geochemical parameters. J Korean Nucl Soc 33:261–269

    CAS  Google Scholar 

  • Ball MC, Brown DS, Perkins LJ (1997) Diffuse layers on the surface of mineral quartz. J Mater Chem 7:365–368

    Article  CAS  Google Scholar 

  • Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA (2000) Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochim Cosmochim Acta 64:2737–2749

    Article  CAS  Google Scholar 

  • Barnett MO, Jardine PM, Brooks SC, Selim HM (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Sci Soc Am J 64:908–917

    Article  CAS  Google Scholar 

  • Bethke CM (1996) Geochemical reaction modeling. Concepts and applications. Oxford University Press, New York

    Google Scholar 

  • Bethke CM (2002) The Geochemist’s Workbench® 4.0. University of Illinois, Urbana

    Google Scholar 

  • Bickmore BR, Nagy KL, Young JS, Drexler JW (2001) Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions. Environ Sci Technol 35:4481–4486

    Article  CAS  Google Scholar 

  • Bickmore BR, Nagy KL, Gray AK, Brinkerhoff AR (2006) The effect of Al(OH)4− on the dissolution rate of quartz. Geochim Cosmochim Acta 70:290–305

    Article  CAS  Google Scholar 

  • Cameron DA, Klute A (1977) Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resour Res 19:718–724

    Google Scholar 

  • Catalano JG, McKinley JP, Zachara JM, Heald SM, Smith SC, Brown GE (2006) Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ Sci Technol 40:2517–2524

    Article  CAS  Google Scholar 

  • Chen G, Flury M (2005) Retention of mineral colloids in unsaturated porous media as related to their surface properties. Colloids Surf A Physicochem Eng Asp 256:207–216

    Article  CAS  Google Scholar 

  • Cheng T, Barnett MO, Roden EE, Zhuang J (2007) Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: an experimental study. Chemosphere 68:1218–1223

    Article  CAS  Google Scholar 

  • Coats KH, Smith BD (1964) Dead-end pore volume and dispersion in porous media. Soc Petrol Eng J 4:73–84

    Article  Google Scholar 

  • Contardi JS, Turner DR, Ahn TM (2001) Modeling colloid transport for performance assessment. J Contam Hydrol 47:323–333

    Article  CAS  Google Scholar 

  • Crançon P, van der Lee J (2003) Speciation and mobility of uranium(VI) in humic-containing soils. Radiochim Acta 91:673–9

    Article  Google Scholar 

  • Crançon P, Pili E, Charlet L (2010) Uranium facilitated transport by water-dispersible colloids in field and soil columns. Sci Total Environ 408:2118–2128

    Article  Google Scholar 

  • CXTFIT/EXCEL (2013) CXTFIT code in excel. http://web.ornl.gov/~t6g/cxtfit/ (accessed 26 July 2014)

  • Fortner JA, Mertz CJ, Goldberg MM, Seifert S (2002) Characteristics of aqueous colloids generated by corrosion of metallic uranium fuel. ANL/CMT/CP-106586. Argonne National Laboratory, Argonne. http://www.ipd.anl.gov/anlpubs/2002/09/44366.pdf. Accessed 13 June 2013

  • Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387

    Article  CAS  Google Scholar 

  • Gabriel U, Gaudet J-P, Spadini L, Charlet L (1998) Reactive transport of uranyl in agoethite column: an experimental and modelling study. Chem Geol 151:107–128

    Article  CAS  Google Scholar 

  • Gamerdinger AP, Kaplan DI, Wellman DM, Serne RJ (2001a) Two-region flow and rate-limited sorption of uranium (VI) during transport in unsaturated silt loam. Water Resour Res 37:3147–3153

    Article  CAS  Google Scholar 

  • Gamerdinger AP, Kaplan DI, Wellman DM, Serne RJ (2001b) Two-region flow and decreased sorption of uranium (VI) during transport in Hanford groundwater and unsaturated sands. Water Resour Res 37:3155–3162

    Article  CAS  Google Scholar 

  • Giblin AM (1980) The role of clay adsorption in genesis of uranium ores. In: Ferguson J, Goleby AB (eds) Uranium in the Pine Creek geosyncline. International Atomic Energy Agency, Vienna, pp 521–529

    Google Scholar 

  • Handley-Sidhu S, Bryan ND, Worsfold PJ, Vaughan DJ, Livens FR, Keith-Roach MJ (2009) Corrosion and transport of depleted uranium in sand-rich environments. Chemosphere 77:1434–1439

    Article  CAS  Google Scholar 

  • Ho CH, Miller NH (1986) Adsorption of uranyl species from bicarbonate solution onto hematite particles. J Colloid Interface Sci 110:165–171

    Article  CAS  Google Scholar 

  • Huber F, Lützenkirchen J (2009) Uranyl retention on quartz—new experimental data and blind prediction using an existing surface complexation model. Aquat Geochem 15:443–456

    Article  CAS  Google Scholar 

  • Jada A, Ait Akbour R, Douch J (2006) Surface charge and adsorption from water onto quartz sand of humic acid. Chemosphere 64:1287–1295

    Article  CAS  Google Scholar 

  • Jones TE, Wood MI, Corbin RA, Simpson BC (2001) Preliminary inventory estimates for single-shell tank leaks in B, BX, and BY tank farms. RPP-7389. CH2M Hill Hanford Group, Inc, Richland

    Google Scholar 

  • Kaplan DI, Serne RJ (1995) Distribution coefficient values describing iodine, neptunium, selenium, technetium, and uranium sorption to Hanford sediments. PNL-10379, SUP. 1. Pacific Northwest Laboratory, Richland

    Book  Google Scholar 

  • Kaplan DI, Gervais TL, Krupka KM (1998) Uranium(VI) sorption to sediments under high pH and ionic strength conditions. Radiochim Acta 80:201–211

    Article  CAS  Google Scholar 

  • Ku TL, Luo S, Goldstein SJ, Murrell MT, Chu WL, Dobson PF (2009) Modeling non-steady state radioisotope transport in the vadose zone—a case study using uranium isotopes at Peña Blanca, Mexico. Geochim Cosmochim Acta 73:6052–6064

    Article  CAS  Google Scholar 

  • Larson LN, Stone JJ (2011) Sediment-bound arsenic and uranium within the Bowman-Haley Reservoir, North Dakota. Water Air Soil Pollut 219:27–42

    Article  CAS  Google Scholar 

  • Leduc LG, Ferroni GD, Trevors JT (1997) Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J Microbiol Biotechnol 13:453–455

    Article  CAS  Google Scholar 

  • Lenhart JJ, Honeyman BD (1999) Uranium(VI) sorption to hematite in the presence of humic acid. Geochim Cosmochim Acta 63:2891–901

    Article  CAS  Google Scholar 

  • Lesher EK, Honeyman BD, Ranville JF (2013) Detection and characterization of uranium-humic complexes during 1D transport studies. Geochim Cosmochim Acta 109:127–142

    Article  CAS  Google Scholar 

  • Liu C, Zachara JM, Qafoku O, McKinley JP, Heald SM, Wang Z (2004) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford site, USA. Geochim Cosmochim Acta 68:4519–4537

    Article  CAS  Google Scholar 

  • Liu CX, Zachara JM, Yantasee W, Majors PD, McKinley JP (2006) Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, United States. Water Resour Res 42:15

    Google Scholar 

  • Liu C, Shi Z, Zachara JM (2009) Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation. Environ Sci Technol 43:6560–6566

    Article  CAS  Google Scholar 

  • Lu L, Conca J, Parker GR, Leonard PA, Moore B, Strietelmeier B, Triay IR (2000) Adsorption of actinides onto colloids as a function of time, temperature, ionic strength, and colloid concentration. Report LA-UR- 00-51-21. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Ma R, Zheng C, Prommer H, Greskowiak J, Liu C, Zachara J, Rockhold M (2010) A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour Res. doi:10.1029/2009WR008168

    Google Scholar 

  • Ma R, Zheng C, Liu C, Greskowiak J, Prommer H, Zachara J (2014a) Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions. Water Resour Res 50:1006–1024

    Article  CAS  Google Scholar 

  • Ma R, Liu C, Greskowiak J, Prommer H, Zachara J, Zheng C (2014b) Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone. J Contam Hydrol 156:27–37

    Article  CAS  Google Scholar 

  • Malin JN, Geiger FM (2010) Uranyl adsorption and speciation at the fused silica/water interface studied by resonantly enhanced second harmonic generation and the χ3 method. J Phys Chem A 114:1797–1805

    Article  CAS  Google Scholar 

  • Mashal K, Harsh JB, Flury M, Felmy AR, Zhaq H (2004) Colloid formation in Hanford sediments reacted with simulated tank waste. Environ Sci Technol 38:5750–5756

    Article  CAS  Google Scholar 

  • McKinley JP, Zachara JM, Liu C, Heald SC, Prenitzer BI, Kempshall BW (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford site, Washington. Geochim Cosmochim Acta 70:1873–1887

    Article  CAS  Google Scholar 

  • McKinley JP, Zachara JM, Wan J, McCready DE, Heald SM (2007a) Geochemical controls on contaminant uranium in vadose Hanford formation sediments at the 200 area and 300 area, Hanford site, Washington. Vadose Zone J 6:1004–1017

    Article  CAS  Google Scholar 

  • McKinley JP, Zachara JM, Smith SC, Liu C (2007b) Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments at the Hanford site, Washington. Geochim Cosmochim Acta 71:305–325

    Article  CAS  Google Scholar 

  • Mertz CJ, Fortner JA, Tsai Y (2003) Understanding the behavior and stability of some uranium mineral colloids. In: Finch RJ, Bullen DB (eds) Scientific basis for nuclear waste management XXVI, vol 757. Materials Research Society Symposium Proceedings, Warrendale, pp 489–496

    Google Scholar 

  • Mibus J, Sachs S, Pfingsten W, Nebelung C, Bernhard G (2007) Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study. J Contam Hydrol 89:199–217

    Article  CAS  Google Scholar 

  • Mihalik J, Tlustos P, Szakova J (2011) The impact of an abandoned uranium mining area on the contamination of agricultural land in its surroundings. Water Air Soil Pollut 215:693–700

    Article  CAS  Google Scholar 

  • Miller AW, Rodriguez DR, Honeyman BD (2013a) Simplified behaviors from increased heterogeneity: I. 2-D uranium transport experiments at the decimeter scale. J Contam Hydrol 148:39–50

    Article  CAS  Google Scholar 

  • Miller AW, Rodriguez DR, Honeyman BD (2013b) Simplified behaviors from increased heterogeneity: II. 3-D uranium transport at the decimeter scale and intertank comparisons. J Contam Hydrol 148:51–66

    Article  CAS  Google Scholar 

  • Missana T, García-Gutiérrez M, Alonso Ú (2004) Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Appl Clay Sci 26:137–150

    Article  CAS  Google Scholar 

  • Moyes LN, Parkman RH, Charnock JM, Vaughan DJ, Livens FR, Hughes CR, Braithwaite A (2000) Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite: an X-ray absorption spectroscopy study. Environ Sci Technol 34:1062–1068

    Article  CAS  Google Scholar 

  • Nielsen DR, van Genuchten MT, Biggar JW (1986) Water flow and solute transport processes in the unsaturated zone. Water Resour Res 22:89S–108S

    Article  Google Scholar 

  • Nkedi-Kizza P, Biggar JW, Selim HM, van Genuchten MT, Wierenga PJ, Davidson JM, Nielsen DR (1984) On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol. Water Resour Res 20:1123–1130

    Article  CAS  Google Scholar 

  • Parker JC, van Genuchten MTh (1984) Determining transport parameters from laboratory and field tracer experiments. Bull 84–3, Va Agric Exp St, Blacksburg

  • Phillippi JM, Loganathan VA, McIndoe MJ, Barnett MO, Clement TP, Roden EE (2007) Theoretical solid/solution ratio effects on adsorption and transport: uranium(VI) and carbonate. Soil Sci Soc Am J 71:329–335

    Article  CAS  Google Scholar 

  • Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) UraniumVI sorption behavior on silicate mineral mixtures. J Contam Hydrol 47:241–253

    Article  CAS  Google Scholar 

  • Qafoku NP, Ainsworth CC, Szecsody JE, Qafoku OS (2004) Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions. Geochim Cosmochim Acta 68:2981–2995

    Article  CAS  Google Scholar 

  • Qafoku NP, Zachara JM, Liu C, Gassman PL, Qafoku OS, Smith SC (2005) Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ Sci Technol 39:3157–3165

    Article  CAS  Google Scholar 

  • Read D, Lawless TA, Sims RJ, Butter KR (1993) Uranium migration through intact sandstone cores. J Contam Hydrol 13:277–289

    Article  CAS  Google Scholar 

  • Redden G, Bargar J, Bencheikh-Latmani R (2001) Citrate enhanced uranyl adsorption on goethite: an EXAFS analysis. J Colloid Interface Sci 244:211–219

    Article  CAS  Google Scholar 

  • Reich T, Moll H, Arnold T, Denecke MA, Hennig C, Geipel G, Bernhard G, Nitsche H, Allen PG, Bucher JJ, Edelstein NM, Shuh DK (1998) An EXAFS study of uranium(VI) sorption onto silica gel and ferrihydrite. J Electron Spectrosc Relat Phenom 96:237–243

    Article  CAS  Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  CAS  Google Scholar 

  • Rod KA, Um W, Flury M (2010) Transport of strontium and cesium in simulated Hanford tank waste leachate through quartz sand under saturated and unsaturated flow. Environ Sci Technol 44:8089–8094

    Article  CAS  Google Scholar 

  • Rod KA, Wellman DM, Flury M, Pierce EM, Harsh JB (2012) Diffuse release of uranium from contaminated sediments into capillary fringe pore water. J Contam Hydrol 140–141:164–172

    Article  Google Scholar 

  • Salter PF, Ames LL, McGarrah JE (1981) The sorption behavior of selected radionuclides on Columbia River basalts, RHO-BWI-LD-48. Rockwell Hanford Operations, Richland

    Google Scholar 

  • Schnug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. Environ Sci Technol 47:2433–2434

    Article  CAS  Google Scholar 

  • Selim HM, Davidson JM, Mansell RS (1976) Evaluation of a two-site adsorption-desorption model for describing solute transport in soils. In Proc Summer Computer Simulation Conf, Washington, DC

  • Serne RJ, Clayton RE, Kutnyakov IV, Last GV, LeGore VL, Wilson TC, Schaef HT, O’Hara MJ, Wagnon KB, Lanigan DC, Brown CF, Williams BA, Lindenmeier CW, Orr RD, Burke DS, Ainsworth CC (2002) Characterization of vadose zone sediment: borehole 41-09-39 in the S-SX waste management area, PNNL-13757-3. U.S. Department of Energy, Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Shang J, Liu C, Wang Z, Zachara JM (2011) Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity. Environ Sci Technol 45:6025–6031

    Article  CAS  Google Scholar 

  • Shang J, Liu C, Wang Z, Zachara J (2014) Long-term kinetics of uranyl desorption from sediments under advective conditions. Water Resour Res 50:855–870

    Article  CAS  Google Scholar 

  • Sheppard MI, Thibault DH (1988) Migration of technetium, iodine, neptunium, and uranium in the peat of two minerotrophic mires. J Environ Qual 17:644–653

    Article  CAS  Google Scholar 

  • Sims R, Lawless TA, Alexander JL, Bennett DG, Read D (1996) Uranium migration through intact sandstone: effect of pollutant concentration and the reversibility of uptake. J Contam Hydrol 21:215–228

    Article  CAS  Google Scholar 

  • Stoliker DL, Kent DB, Zachara JM (2011) Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments. Environ Sci Technol 45:8733–8740

    Article  CAS  Google Scholar 

  • Stoliker DL, Liu C, Kent DB, Zachara JM (2013) Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments. Water Resour Res 49:1163–1177

    Article  CAS  Google Scholar 

  • Stubbs JE, Veblen LA, Elbert DC, Zachara JM, Davis JA, Veblen DR (2009) Newly recognized hosts for uranium in the Hanford Site vadose zone. Geochim Cosmochim Acta 73:1563–1576

    Article  CAS  Google Scholar 

  • Tang G, Mayes MA, Parker JC, Jardine PM (2010) CXTFIT/Excel—a modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments. Comput Geosci 36:1200–1209

    Article  CAS  Google Scholar 

  • Tompson AFB, Hudson GB, Smith DK, Hunt JR (2006) Analysis of radionuclide migration through a 200-m vadose zone following a 16-year infiltration event. Adv Water Resour 29:281–292

    Article  CAS  Google Scholar 

  • Toride N, Leij FJ, van Genuchten MT (1999) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.1, Research Report No. 137. U.S. Salinity Laboratory, U.S. Department of Agriculture, Riverside

    Google Scholar 

  • Um W, Wang Z, Serne RJ, Williams BD, Brown CF, Dodge CJ, Francis AJ (2009) Uranium phases in contaminated sediments below Hanford’s U tank farm. Environ Sci Technol 43:4280–4286

    Article  CAS  Google Scholar 

  • Um W, Icenhower JP, Brown CF, Serne RJ, Wang Z, Dodge CJ, Francis AJ (2010a) Characterization of uranium-contaminated sediments from beneath a nuclear waste storage tank from Hanford, Washington: implications for contaminant transport and fate. Geochim Cosmochim Acta 74:1363–1380

    Article  CAS  Google Scholar 

  • Um W, Zachara JM, Liu C, Moore DA, Rod KA (2010b) Resupply mechanism to a contaminated aquifer: a laboratory study of U(VI) desorption from capillary fringe sediments. Geochim Cosmochim Acta 74:5155–5170

    Article  CAS  Google Scholar 

  • US EPA (U.S. Environmental Protection Agency) (1999) Understanding variation in partition coefficient, Kd, values: volume II. Review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium. U.S. Environmental Protection Agency, Office of Air and Radiation. EPA 402-R-99-004B http://www.epa.gov/radiation/docs/kdreport/vol2/402-r-99-004b.pdf. Accessed 12 June 2013

  • van Genuchten MT, Wagenet RJ (1989) Two-site/two-region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci Soc Am J 53:1303–1310

    Article  Google Scholar 

  • van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci Soc Am J 40:473–481

    Article  Google Scholar 

  • Viani BE, Torretto PC (1998) Sorption and transport of uranium on hematite. UCRL-ID-129848, YMP Milestone Report SPL3BM4 - 1997. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478

    Article  CAS  Google Scholar 

  • Wang G, Um W (2012) Mineral dissolution and secondary precipitation on quartz sand in simulated Hanford tank solutions affecting subsurface porosity. J Hydrol 472–473:159–168

    Article  Google Scholar 

  • Wang Z, Zachara JM, Gassman PL, Liu C, Qafoku O, Yantasee W, Catalano JG (2005) Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim Cosmochim Acta 69:1391–1403

    Article  CAS  Google Scholar 

  • Wellman DM, Gamerdinger AP, Kaplan DI, Serne RJ (2008) Effect of particle-scale heterogeneity on uranium(VI) transport in unsaturated porous media. Vadose Zone J 7:67–78

    Article  CAS  Google Scholar 

  • Williams BA, Brown CF, Um W, Nimmons MJ, Peterson RE, Bjornstad BN, Lanigan DC, Serne RJ, Spane FA, Rockhold ML (2007) Limited field investigation report for uranium contamination in the 300 area, 300-FF-5 operable unit, Hanford Site, Washington. PNNL-16435. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  • Yabusaki SB, Fang Y, Waichler SR (2008) Building conceptual models of field-scale uranium reactive transport in a dynamic vadose zone-aquifer-river system. Water Resour Res. doi:10.1029/2007WR006617

    Google Scholar 

  • Yabusaki SB, Fang Y, Williams KH, Murray CJ, Ward AL, Dayvault RD, Waichler SR, Newcomer DR, Spane FA, Long PE (2011) Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. J Contam Hydrol 126:271–290

    Article  CAS  Google Scholar 

  • Yin J, Haggerty R, Stoliker DL, Kent DB, Istok JD, Greskowiak J, Zachara JM (2011) Transient groundwater chemistry near a river: effects on U(VI) transport in laboratory column experiments. Water Resour Res. doi:10.1029/2010WR009369

    Google Scholar 

  • Zachara JM, Ainsworth CC, McKinley JP, Murphy EM, Westall JC, Rao PSC (1992) Subsurface chemistry of organic ligand-radionuclide mixtures. In: Pacific Northwest Laboratory Annual Report for 1991 to the DOE Office of Energy Research Part 2: Environmental Science, PNL-8000 Pt. 2. Pacific Northwest Laboratory, Richland, pp 1–12

  • Zänker H, Hüttig G, Arnold T, Nitsche H (2006) Formation of iron-containing colloids by the weathering of phyllite. Aquat Geochem 12:299–325

    Article  Google Scholar 

  • Zheng Z, Wan J (2005) Release of contaminant U(VI) from soils. Radiochim Acta 93:211–217

    Article  CAS  Google Scholar 

  • Zhuang J, Flury M, Jin Y (2003) Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand. Environ Sci Technol 37:4905–4911

    Article  CAS  Google Scholar 

  • Zielinski RA (1980) Uranium in secondary silica: a possible exploration guide. Econ Geol 75:592–602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Department of Energy, Office of Biological and Environmental Research, Environmental Remediation Sciences Program under grant number DE-FG02-06ER64193, and Clemson University. We thank Dr. Zhihong Xu, Editor-in-Chief of the Journal of Soils and Sediments, and the two anonymous reviewers for their thoughtful and constructive comments to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe J. G. Darnault.

Additional information

Responsible Editor: Dong-Mei Zhou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyuşur, B., Li, C., Baveye, P.C. et al. pH-dependent reactive transport of uranium(VI) in unsaturated sand. J Soils Sediments 15, 634–647 (2015). https://doi.org/10.1007/s11368-014-1018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-1018-x

Keywords

Navigation