Skip to main content
Log in

Novel Process for Solid State Reduction of Metal Oxides and Hydroxides

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Recently the reductive expansion synthesis (RES) method was introduced as a means to create nano- and sub-micron metal particles and alloys by rapid heating of physical mixtures of urea with a metal nitrate. In the present work the generality of the RES method was demonstrated by creating metal micron and sub-micron particles from oxide and hydroxide precursors, and outlining the impact of temperature, precursor ratio, and gas flow rate on the product. For example, precursor selection impacted the temperature required for complete reduction, the amount of carbon present, and the size of the metal particles. For complete NiO reduction to micron scale particles, high urea content and a high temperature [ca. 1073 K (800 °C)] were required. In contrast, Ni(OH)2 was reduced to metal at far lower temperatures. Moreover, the Ni particles formed from NiOH were sub-micron (ca. 200 nm) in size and carbon encapsulated. Other parameter variations had a similarly significant impact. Indeed, the reciprocal relationship between inert gas flow rate and the extent of reduction supports the supposition that the primary mechanism of reduced metal particle formation is the reduction of metal oxide particles by gases produced by urea decomposition. Collectively these and other findings indicate the RES method can be manipulated to create a range of micron and sub-micron reduced metal particle architectures appropriate for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Zea, C.C. Luhrs, and J. Phillips: J. Mater. Res., 2011, vol. 26, p. 672.

    Article  CAS  Google Scholar 

  2. W. Brockner, C. Ehrhardt, and M. Gjikaj: Thermochimica Acta, 2007, vol. 456, pp. 64–68.

    Article  CAS  Google Scholar 

  3. M. Jovic, M. Dasic, K. Holl, D. Ilic, and S. Mentus: J. Serb. Chem. Soc., 2009, vol. 74, pp. 53–60.

    Article  CAS  Google Scholar 

  4. R. Garcia, G.A. Hirata, and J. McKittrick: J. Mater. Res., 2001, vol. 16, pp. 1059–65.

    Article  CAS  Google Scholar 

  5. A. Dutta, S. Patra, V. Bedekar, A.K. Tyagi, and R.N. Basu: J. Nanosci. Nanotechnol., 2009, vol. 9, pp. 3075–83.

    Article  CAS  Google Scholar 

  6. B. Mandal, A. Dutta, S.K. Deshpande, R.N. Basu, and A.K. Tyagi: J. Mater. Res., 2009, vol. 24, pp. 2855–62.

    Article  CAS  Google Scholar 

  7. B. Jura, C. Paraschiv, A. Lanculescu, and O. Carp: J. Therm. Anal. Calorim., 2009, vol. 97, pp. 91–98.

    Article  CAS  Google Scholar 

  8. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, and M.G. Bawendi: Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  9. Savage, N. and M.S. Diallo, J. Nanopart. Res. 7(4–5), 331–42 (2005).

    Article  CAS  Google Scholar 

  10. Weber, A.P., M. Seipenbusch, and G. Kasper, J. Nanopart. Res. 5(3–4), 293-98 (2003).

    Article  CAS  Google Scholar 

  11. Guo, L., Q. Huang, X.-Y. Li, and S. Yang, Phys. Chem. Chem. Phys. 3(9), 1661-65 (2001).

    Article  CAS  Google Scholar 

  12. Berry, C.C. and A.S.G. Curtis, J. Phys. D 36(13), R198-R206 (2006).

    Article  Google Scholar 

  13. Bauer, L.A., N.S. Birenbaum, and G.J. Meyer, J. Mater. Chem. 14(4), 517-26 (2004).

    Article  CAS  Google Scholar 

  14. Tartaj, P., M. Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzales-Carreno, and C.J. Serna, J. Phys. D 36(13), R182-R197 (2003).

    Article  CAS  Google Scholar 

  15. Halbreich, A., J. Roger, J.N. Pons, D. Geldwerth, M.F. DaSilva, M. Rondier, and J.C. Bacri, Biochimie 80(5–6), 379-390 (1998).

    Article  CAS  Google Scholar 

  16. Scherer, F., M. Anton, U. Schillinger, J. Henke, C. Bergeman, A. Kruger, B. Gasnbacher, and C. Plank, Gene Ther. 9(2),102-09 (2002).

    Article  CAS  Google Scholar 

  17. Pankhurst, Q.A., J. Connolly, S.K. Jones, and J. Dobson, J. Phys. D 36(13), R167-R181 (2003).

    Article  CAS  Google Scholar 

  18. Hyeon, T., Chem. Commun. 8, pp. 927-34 (2003).

    Article  Google Scholar 

  19. Carpenter, E.E., J. Magn. Magn. Mater. 225(1–2), 17-20 (2001).

    Article  CAS  Google Scholar 

  20. Miguel, O.B., M.P. Morales, C.J. Serna, and S. Veintemillas-Verdaguer, IEEE Trans. Magn. 38(5), 2616-18 (2002).

    Article  CAS  Google Scholar 

  21. Veintemillas-Verdaguer, S., O. Bomati, M.P. Morales, P.E. DiNunzio, and S. Martelli, Mater. Lett. 57(5-6), 1184–89 (2003).

    Article  CAS  Google Scholar 

  22. Martelli, S., O. Bomati-Miguel, L. de Dominicis, R. Giorgi, F. Rinaldi, and S. Veintemillas-Verdaguer, Appl. Surf. Sci. 186(1–4), 562-67 (2002).

    Article  CAS  Google Scholar 

  23. Sun, Y.P., H.W. Rollins, and R. Guduru (1999) Chem. Mater. 11(1), 7.

    Article  CAS  Google Scholar 

  24. E. Bermejo, T. Becue, C. Lacour, and M. Quarton, Powder Technol. 94(1), 29-34 (1997).

    Article  CAS  Google Scholar 

  25. Chen, D.H. and C.H. Hsieh, J. Mater. Chem. 12(8), 2412-15 (2002).

    Article  CAS  Google Scholar 

  26. Hou, Y.L. and S. Gao, J. Mater. Chem. 13(7), 1510-12 (2003).

    Article  CAS  Google Scholar 

  27. Wu, S.H. and D.H. Chen, Chem. Lett. 33(4), 406-07 (2004).

    Article  CAS  Google Scholar 

  28. F.D. Ge, L. Chen, W. Ku, and J. Zhu, Nanostruct. Mater. 8(6), 703-09 (1997).

    Article  CAS  Google Scholar 

  29. Phillips, J., and J. A. Dumesic, Appl. Catal. 9,1-30 (1984).

    Article  CAS  Google Scholar 

  30. Chou, C. H., and J. Phillips, J. Mater. Res. 7, 2107-113 (1992).

    Article  CAS  Google Scholar 

  31. J. Phillips, W. Kroenke, and W.L. Perry: U.S. Patent 6,689,192, 2004.

  32. Phillips, J., C. C. Luhrs, M. Richard, IEEE Trans. Plasmas 37, 726-39 (2009).

    Article  Google Scholar 

  33. Grass, R.N. and W. Stark, J. Mater. Chem. 16, 1825–30 (2006).

    Article  CAS  Google Scholar 

  34. Goia DV (2004) J. Mater. Chem. 14:451–58.

    Article  CAS  Google Scholar 

  35. D. Andreescu, C. Goia, D.V. Goia, K. Blakely, R.B. Donn, and E. Groat: CARTS Europe 2004: 18th Annual Passive Components Conference, 2004.

  36. J. Phillips, W. Kroenke, and W.L. Perry: U.S. Patent 6,755,886, 2004.

  37. A. Baiker, and M. Maciejewski: J. Chem. Soc. Faraday Trans. I 80, 2331–41 (1984).

    Article  CAS  Google Scholar 

  38. Naklyudov, I.M. and A.N. Morozov: Physica B 350, 325–37 (2004).

    Article  Google Scholar 

  39. S. Sandler: Chemical and Engineering Thermodynamics, 2nd ed. Wiley, New York, 1989.

    Google Scholar 

  40. Gleiman, S., C-K. Chen, A. Datye, and J. Phillips. J. Mater. Sci., 37, 3429-440 (2002).

    Article  CAS  Google Scholar 

  41. Atwater, M.A., J. Phillips, S.K. Doorn, C.C. Luhrs, Y.F. Diez, J.A. Menendez, Z.C. Leseman. Carbon 47, 2269-80.(2009).

    Article  CAS  Google Scholar 

  42. Atwater, M.A., J. Phillips and Z.C. Leseman. J. Phys. Chem. 114, 5804-810 (2010).

    CAS  Google Scholar 

  43. Phillips, J., T. Shiina, M. Nemer and K. Lester. Langmuir 22, 9694–703 (2006).

    Article  CAS  Google Scholar 

  44. Gavillet, J., A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Phys. Rev. Lett. 87, 2755041–2755044 (2001).

    Article  Google Scholar 

  45. Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, and T. Hayashi: Jpn. J. Appl. Phys., Part 1, 1994, vol. 33, p. L526.

  46. Gavillet, J., A. Loiseau, F. Ducastelle, S. Thair, P. Bernier, O. Stephan, J. Thibault, J.C.Charlier, Carbon 40, 1649–63 (2002).

    Article  CAS  Google Scholar 

  47. Frenklach, M., C.A. Schuetz, J. Ping, Proc. Combust. Inst. 30, 1389–96 (2005).

    Article  Google Scholar 

  48. Netto, A., M. Frenklach, Diamond Relat. Mater. 14, 1630–46 (2005).

    Article  CAS  Google Scholar 

  49. Lin, S.C., and J. Phillips, J. Appl. Phys. 58, 1943 (1985).

    Article  CAS  Google Scholar 

  50. Jung, H.J, M.A. Vannice, L.N. Mulay, R.N. Stanfield and W.N. Delgass, J. Catal. 76, 208–24 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Phillips.

Additional information

Manuscript submitted April 12, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luhrs, C., Kane, M., Leseman, Z. et al. Novel Process for Solid State Reduction of Metal Oxides and Hydroxides. Metall Mater Trans B 44, 115–122 (2013). https://doi.org/10.1007/s11663-012-9756-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9756-x

Keywords

Navigation