Skip to main content
Log in

Calamintha nepeta L. (Savi) as source of phytotoxic compounds: bio-guided fractionation in identifying biological active molecules

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Calamintha nepeta L. (Savi), known as Lesser Catmint, is a Mediterranean species belonging to the Labiatae family, considered an important source of natural compounds. Since little is known about phytotoxic potential of Lesser Catmint, the bio-guided fractionation method was employed to isolate and identify some compounds, prerequisite for their possible future use in weed management. Leaves and stems of catmint were extracted with methanol and fractionated using n-hexane, chloroform, ethyl acetate and n-butanol, solvents with different polarity. The potential phytotoxicity of the methanolic extract and its fractions, evaluated by ED50 values comparison, was assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.). Germination and root growth of lettuce were strongly inhibited by catmint methanolic extract and its fractions, showing the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. In the most active fraction, analyzed by HPLC, 5 poliphenols, gallic, vanillic, syringic, p-coumaric and ferulic acids, were identified and quantified. Whereas, the n-hexane fraction was a mixture of 32 chemicals, mainly composed of terpenoids and fatty acids, as analyzed by gas chromatography–mass spectrometry (GC–MS). Further, GC analysis allowed to quantify 5 compounds: camphor, trans-caryophyllene, menthol, farnesene and pulegone. Furthermore, both fractions inhibited seed germination and root growth of two of the most common weeds, Amaranthus retroflexus and Echinochloa crus-galli. The results confirmed the phytotoxic activity of C. nepeta L. (Savi) due to the presence of different molecule classes with biological activity and their potential future application as bio-herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An M, Haig T, Pratley JE (2000) Phytotoxicity of Vulpia residues: II. Separation, identification, and quantitation of allelochemicals from Vulpia myuros. J Chem Ecol 26:1465–1476

    Article  CAS  Google Scholar 

  • Araniti F, Sorgonà A, Lupini A, Abenavoli MR (2012a) Screening of Mediterranean wild plant species for allelopathic activity and their use as bio-herbicides. Allelopathy J 29:107–124

    Google Scholar 

  • Araniti F, Lupini A, Sorgonà A, Conforti F, Marrelli M, Statti GA, Menichini F, Abenavoli MR (2012b) Allelopathic potential of Artemisia arborescens: isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays. Nat Prod Res. doi:10.1080/14786419.2012.691491

  • Asplund RO (1969) Some quantitative aspects of the phytotoxicity of monoterpenes. Weed Sci 17:454–455

    CAS  Google Scholar 

  • Bandini P, Pacchiani M (1981) Constituents, properties and use of Calamintha nepeta. Essenze e Derivati Agrumari 51:325–330

    CAS  Google Scholar 

  • Barnes JP, Putnam AR, Burke BA, Aasen AJ (1987) Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 26:1385–1390

    Article  CAS  Google Scholar 

  • Barton AFM, Dell B, Knight AR (2010) Herbicidal activity of cineole derivatives. J Agric Food Chem 58:10147–10155

    Article  PubMed  CAS  Google Scholar 

  • Belz RG, Hurle K, Duke SO (2005) Dose-response a challenge for allelopathy? Nonlinearity Biol Toxicol Med 3:173–211

    Article  PubMed  CAS  Google Scholar 

  • Ben-Hammoudo M, Kremer RJ, Monor HC, Sarwar MA (1995) Chemical basis for differential allelopathic potential of sorghum hybrid on wheat. J Chem Ecol 21:775–786

    Article  Google Scholar 

  • Cai Y, Jia JW, Crock J, Lin ZX, Chen XY, Croteau R (2002) A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry 61:523–529

    Article  PubMed  CAS  Google Scholar 

  • Chaimovitsh D, Abu-Abied M, Belausov E, Rubin B, Dudai N, Sadot E (2010) Microtubules are an intracellular target of the plant terpene citral. Plant J 61:399–408

    Article  PubMed  CAS  Google Scholar 

  • Chiapusio G, Sanchez AM, Reigosa MJ, Gonzalez L, Pellisier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453

    Article  CAS  Google Scholar 

  • Chon SU, Choi SKC, Jung S, Jang HG, Pyo BS, Kim SM (2002) Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop prot 21:1077–1082

    Article  CAS  Google Scholar 

  • Chou CH (1989) Allelopathic research of subtropical vegetation in Taiwan IV. J Chem Ecol 15:2149–2159

    Article  CAS  Google Scholar 

  • Costea M, Weaver SE, Tardif FJ (2004) The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can J Plant Sci 84:631–668

    Article  Google Scholar 

  • Das-Neves HJC, Gaspar EMM (1990) Identification of active compounds in wheat straw extracts with allelopathic activity by HRGC-MS and HRGC-FTIR. J High Resolut Chromatogr 13:550–554

    Article  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • De Almeida Barbosa LC, Ferreira ML, Demuner AJ, Da Silva AA, De Cassia Pereira R (2001) Preparation and phytotoxicity of sorgoleone analogues. Quim Nova 24:751–755

    Article  Google Scholar 

  • Djurdjevic L, Dinic A, Pavlovic P, Mitrovic M, Karadzic B, Tesevic V (2004) Allelopathic potential of Allium ursinum L. Biochem Syst Ecol 32:533–544

    Article  CAS  Google Scholar 

  • Duke S, Dayan F, Romagni J, Rimando A (2000) Natural products as sources of herbicides: current status and future trends. Weed Res 40:99–112 Oxford

    Article  CAS  Google Scholar 

  • Duke SO, Dayan FE, Kagan IA, Baerson SR (2005) New herbicide target sites from natural compounds. Am chem soc Sym Ser 892:132–141

    Google Scholar 

  • Flamini G, Cioni PL, Puleio R, Morelli I, Panizzi L (1999) Antimicrobial activity of the essential oil of Calamintha nepeta and its constituent pulegone against bacteria and fungi. Phytother Res 13:349–351

    Article  PubMed  CAS  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609

    Article  CAS  Google Scholar 

  • Golisz A, Lata B, Gawronski SW, Fujii Y (2007) Specific and total activities of the allelochemicals identified in buckwheat. Weed Biol Manag 7:164–171

    Article  CAS  Google Scholar 

  • Gross EM (2001) Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 27:2116–2119

    Google Scholar 

  • Holm GL, Plucknett DL, Pancho JV, Herber JP (1991) The world’s worst weeds—distribution and ecology. Krieger Publishing Company: Malabar, FL, USA. 32: 609

  • Huang Z, Liao L, Wang S, Cao G (2000) Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland. J Chem Ecol 26:2211–2219

    Article  CAS  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agr Food Chem 49:715–720

    Article  CAS  Google Scholar 

  • Inderjit D, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    Article  PubMed  CAS  Google Scholar 

  • Iqbal Z, Hiradate S, Noda A, Isojima S, Fujii Y (2003) Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Sci 51:657–662

    Article  CAS  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase micro extraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 12:1398–1407

    Article  Google Scholar 

  • Kil BS, Yun KW (1992) Allelopathic effects of water extracts of Artemisia princeps var. orientalis on selected plant species. J Chem Ecol 18:39–51

    Article  Google Scholar 

  • Krygier K, Sosulski F, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J Agric Food Chem 30:330–334

    Article  CAS  Google Scholar 

  • Kunert G, Reinhold C, Gershenzon J (2010) Constitutive emission of the aphid alarm pheromone, (E)-b-farnesene, from plants does not serve as a direct defense against aphids. BMC Ecol 10:2–12

    Article  Google Scholar 

  • Kuwatsuka S, Shindo H (1973) Behavior of phenolic substances in the decaying process of plants: I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Sci Plant Nutr 19:219–227

    Article  CAS  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  Google Scholar 

  • López ML, Bonzani NE, Zygadlo JA (2008) Allelopathic potential of Tagetes minuta terpenes by a chemical, anatomical and phytotoxic approach. Biochem Syst Ecol 36:882–890

    Article  Google Scholar 

  • Lorber P, Muller WH (1976) Volatile growth inhibitors produced by Salvia leucophylla: effects on seedling root tip ultrastructure. Am J Bot 63:196–200

    Article  Google Scholar 

  • Macias FA, Castellano D, Molinillo JMG (2000) Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem 48:2512–2521

    Article  PubMed  CAS  Google Scholar 

  • Macias FA, Marin D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17:18–23

    Article  PubMed  Google Scholar 

  • Macias FA, Marin D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JMG (2005) Structure-activity relationships (SAR) studies of benzoxazinoids, their degradation products and analogues. Phytotoxicity on standard target species (STS). J Agric Food Chem 53:538–548

    Article  PubMed  CAS  Google Scholar 

  • Macias FA, Lacret R, Varela RM, Nogueiras C, Molinillo JM (2010) Isolation and phytotoxicity of terpenes from Tectona grandis. J Chem Ecol 36:396–404

    Article  PubMed  CAS  Google Scholar 

  • Macías FA, Molinillo JMG, Galindo JCG, Varela RM, Simonet AM, Castellano D (2001) The use of allelopathic studies in the search for natural herbicides. J Crop Prod 4:237–255

    Article  Google Scholar 

  • Macías FA, Oliveros-Bastidas A, Marín D, Carrera C, Chinchilla N, Molinillo JMG (2008) Plant biocommunicators: their phytotoxicithy, degradation studies and potential use as herbicide models. Phytochem Rev 7:179–194

    Article  Google Scholar 

  • Morgan E, Overholt W (2005) Potential allelopathic effects of Brazilian pepper (Schinus terebinthifolius Raddi, Anacardiaceae) aqueous extract on germination and growth of selected Florida native plants 1. J Torrey Bot Soc 132:11–15

    Article  Google Scholar 

  • Mucciarelli M, Camusso W, Bertea CM, Bossi S, Maffei M (2001) Effect of (+)-pulegone and other oil components of Mentha piperita on cucumber respiration. Phytochemistry 57:91–98

    Article  PubMed  CAS  Google Scholar 

  • Muller WH, Muller CH (1964) Volatile growth inhibitors produced by Salvia Species. Bull Torrey Bot Club 91:327–330

    Article  CAS  Google Scholar 

  • Panizzi L, Flamini G, Cioni P, Morelli I (1993) Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J Ethnopharmacol 39:167–170

    Article  PubMed  CAS  Google Scholar 

  • Patterson D (1981) Effects of allelopathic chemicals on growth and physiological responses of soybean (Glycine max). Weed Sci 29:53–59

    Google Scholar 

  • Pignatti S (1982) Flora d’Italia. 3 vols. Bologna: Edagricole

  • Reigosa M, Pazos-Malvido E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33:1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Reigosa M, Souto X, González L (1999a) Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul 28:83–88

    Article  CAS  Google Scholar 

  • Reigosa MJ, Sánchez-Moreiras A, González L (1999b) Ecophysiological approach in allelopathy. Crit Rev Plant Sci 18:577–608

    Article  CAS  Google Scholar 

  • Rice EL, Pancholy SK (1972) Inhibition of nitrification by climax ecosystems. Am J Bot 59:1033–1040

    Article  Google Scholar 

  • Rice EL, Pancholy SK (1973) Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. Am J Bot 60:691–702

    Article  CAS  Google Scholar 

  • Rice EL, Pancholy SK (1974) Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. Am J Bot 61:1095–1103

    Article  CAS  Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450

    Article  Google Scholar 

  • Rimando AM, Olofsdotter M, Dayan FE, Duke SO (2001) Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron J 93:16–20

    Article  CAS  Google Scholar 

  • Ronald E, Talbert R, Burgos NR (2007) History and management of herbicide-resistant Barnyardgrass (Echinochloa crus-galli) inArkansas rice. Weed Tech 21:324–331

    Article  Google Scholar 

  • Shilling DG, Jones LA, Worsham AD, Parker CE, Wilson RF (1986) Isolation and identification of some phytotoxic compounds from aqueous extracts of rye (Secale cereale L.). J Agric Food Chem 34:633–638

    Article  CAS  Google Scholar 

  • Singh H, Batish DR, Kaur S, Ramezani H, Kohli R (2002) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann Appl Biol 141:111–116

    Article  CAS  Google Scholar 

  • Singleton V, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vit 16:144–158

    CAS  Google Scholar 

  • Streibig JC, Kudsk P, Jensen JE (1998) A general joint action model for herbicide mixtures. Pestic Sci 53:21–28

    Article  CAS  Google Scholar 

  • Wang R, Peng S, Zeng R, Ding LW, Xu Z (2009) Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha HBK and allelopathic potential of β-caryophyllene. Allelopathy J 24:35–44

    Google Scholar 

  • Weston LA, Burke BA, Putnam AR (1987) Isolation, characterization and activity of phytotoxic compounds from quackgrass [Agropyron repens (L.) Beauv.]. J Chem Ecol 13:403–421

    Article  CAS  Google Scholar 

  • Weston LA, Harmon R, Mueller S (1989) Allelopathic potential of sorghum-sudangrass hybrid (sudex). J Chem Ecol 15:1855–1865

    Article  Google Scholar 

  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139

    Article  CAS  Google Scholar 

  • Zhu H, Mallik AU (1994) Interactions between Kalmia and black spruce: isolation and identification of allelopathic compounds. J Chem Ecol 20:407–421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Abenavoli.

Additional information

Communicated by M. J. Reigosa .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araniti, F., Lupini, A., Mercati, F. et al. Calamintha nepeta L. (Savi) as source of phytotoxic compounds: bio-guided fractionation in identifying biological active molecules. Acta Physiol Plant 35, 1979–1988 (2013). https://doi.org/10.1007/s11738-013-1236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1236-7

Keywords

Navigation