Skip to main content
Log in

Medium Initial pH and Carbon Source Stimulate Differential Alkaline Cellulase Time Course Production in Stachybotrys microspora

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production profile of cellulases of the mutant strain A19 from the filamentous fungus Stachybotrys microspora was studied in the presence of various carbon sources (glucose, lactose, cellulose, carboxymethylcellulose (CMC), and wheat bran) and a range of medium initial pH (5, 7, and 8). Two extracellular cellulases from the Stachybotrys strain (endoglucanases and β-glucosidases) were monitored by enzymatic assay, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and zymogram analysis. Glucose and lactose repressed CMCase time course production while they permitted a strong β-glucosidase one. On Avicel cellulose, CMC, and wheat bran, both activities were highly produced. Wheat bran (WB) is the best carbon source with an optimum of production at days 5 and 6. The production kinetics of both activities were shown to depend on the medium initial pH, with a preference for neutral or alkaline pH in the majority of conditions. The exception concerned the β-glucosidase which was much more produced at acidic pH, on glucose and cellulose. Most interestingly, a constitutive and conditional expression of an alkaline endoglucanase was revealed on the glucose-based medium at an initial pH of 8 units. The zymogram analysis confirmed such conclusions and highlighted that carbon sources and the pH of the culture medium directed a differential induction of various endoglucanases and β-glucosidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alper, H., & Stephanopoulos, G. (2009). Nature Reviews Microbiology, 7, 715–723.

    Article  CAS  Google Scholar 

  2. Carroll, A., & Somerville, C. (2009). Annual Review of Plant Biology, 60, 165–182.

    Article  CAS  Google Scholar 

  3. Belghith, H., Ellouz-Chaabouni, S., & Gargouri, A. (2001). Journal of Biotechnology, 89, 257–262.

    Article  CAS  Google Scholar 

  4. Anish, R., Rahman, M. S., & Rao, M. (2007). Biotechnology and Bioengineering, 96, 48–56.

    Article  CAS  Google Scholar 

  5. Ibarra, D., Concepción, M., Angeles, B., Martínez, B. A. T., & Martínez, M. J. (2012). Journal of Industrial Microbiology and Biotechnology, 39, 1–9.

    Article  CAS  Google Scholar 

  6. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  7. Karmakar, M., & Ray, R. R. (2011). Research in Microbiology, 1, 41–53.

    Article  CAS  Google Scholar 

  8. Xiong, H., Weymarn, N. V., Leisola, M., & Turunen, O. (2004). Process Biochemistry, 39, 729–733.

    Article  CAS  Google Scholar 

  9. Sohail, M., Siddiqi, R., Ahmad, A., & Khan, S. A. (2009). New Biotechnology, 25, 437–441.

    Article  CAS  Google Scholar 

  10. Junqi, Z., Pengjun, S., Zhongyuan, L. I., Peilong, Y., Huiying, L., Yingguo, B., et al. (2012). Bioresource Technology, 121, 404–110.

    Article  CAS  Google Scholar 

  11. Ahamed, A., & Vermette, P. (2009). Bioresource Technology, 100, 5979–5987.

    Article  CAS  Google Scholar 

  12. Mello-de-Sousa, T. M., Ildinete, S. P., & Marcio José, P. F. (2011). Enzyme and Microbial Technology, 48, 19–26.

    Article  CAS  Google Scholar 

  13. Saibi, W., & Gargouri, A. (2013). Applied Biochemistry and Biotechnology, 6, 1725–1732.

    Google Scholar 

  14. Amouri, B., & Gargouri, A. (2006). Biochemical Engineering Journal, 32, 191–197.

    Article  CAS  Google Scholar 

  15. Saibi, W., Amouri, B., & Gargouri, A. (2007). Applied Microbiology and Biotechnology, 77, 293–300.

    Article  CAS  Google Scholar 

  16. Brini, F., Saibi, W., Amara, I., Gargouri, A., Masmoudi, K., & Hanin, M. (2010). Bioscience Bitechnology Biochemistry, 74, 1050–1053.

    Article  CAS  Google Scholar 

  17. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391.

    Article  CAS  Google Scholar 

  18. IUPAC (International Union of Pure and Applied Chemistry). (1987). Pure and Applied Chemistry, 59, 257–268.

    Google Scholar 

  19. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Laemmli, U. K., & Favre, M. (1973). Journal of Molecular Biology, 80, 575–592.

    Article  CAS  Google Scholar 

  21. Ruijter, G. J., & Visser, J. (1997). FEMS Microbiology Letters, 151, 103–114.

    Article  CAS  Google Scholar 

  22. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). Journal of Biological Chemistry, 34, 31988–31997.

    Article  Google Scholar 

  23. Abdul Razak, M. N., Ibrahim, M. F., Yee, P. L., Hassan, M. A., & Abd-Aziz, S. (2012). Biotechnology and Bioprocess Engineering, 17, 547–555.

    Article  CAS  Google Scholar 

  24. Mehdi, D., Heidi, S., & Wensheng, Q. (2009). International Journal of Biological Sciences, 6, 578–595.

    Google Scholar 

  25. D-Souza, J., & Volfova, O. (1982). Applied Microbiology and Biotechnology, 16, 123–125.

    Article  CAS  Google Scholar 

  26. Singh, A., Singh, N., & Bishnoi, N. R. (2009). International journal of Environmental Science and Technology, 1, 23–26.

    Google Scholar 

  27. Schiilein, M. (1997). Journal of Biotechnology, 57, 71–81.

    Article  Google Scholar 

  28. Morikawa, Y., Ohashi, T., Mantani, O., & Okada, H. (1995). Applied Microbiology and Biotechnology, 44, 106–111.

    Article  CAS  Google Scholar 

  29. Saibi, W., Abdeljalil, S., & Gargouri, A. (2011). World Journal of Microbiology and Biotechnology, 27, 1765–1774.

    Article  CAS  Google Scholar 

  30. Immanuel, G., Bhagavath, C. M. A., Iyappa, R. P., Esakkiraj, P., & Palavesam, A. (2007). International Journal of Microbiology, 3, 1–7.

    Google Scholar 

  31. Saqib, A. A. N., Hassan, M., Khan, N. F., & Baig, S. (2010). Process Biochemistry, 45, 641–646.

    Article  CAS  Google Scholar 

  32. Soni, R., Nazir, A., & Chadha, B. S. (2010). Industrial Crops and Products, 31, 277–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lamia Jmal-Hammami and Mosbeh Dardouri are thanked for their technical help. We thank Professors Raja Mokdad-Gargouri and Hafedh Belghith for the fruitful discussion of scientific interpretations. This work was supported by grants from the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Saibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hmad, I.B., Abdeljalil, S., Saibi, W. et al. Medium Initial pH and Carbon Source Stimulate Differential Alkaline Cellulase Time Course Production in Stachybotrys microspora . Appl Biochem Biotechnol 172, 2640–2649 (2014). https://doi.org/10.1007/s12010-013-0705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0705-1

Keywords

Navigation