Skip to main content

Advertisement

Log in

Stem Cell and Tissue Engineering Research in the Islamic Republic of Iran

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

During the last few years, the Islamic republic of Iran has consistently grown in nearly all scientific fields and achieved considerable success in producing science and developing technology. The Iranian government and scientific community have jointly started programs to support the creation of new scientific opportunities and technology platforms for research in the domain of stem cell and tissue engineering. In addition, clinical translation of basic researches in the fields of stem cell and regenerative medicine has been amongst the top priorities. Interestingly, the public sector, media, and authorities are also actively monitoring these attainments. In spite of this nationwide interest, however, there is currently a dearth of analytical information on these accomplishments. To address this issue, here we introduce the key decisions made by the country’s policy makers and also review some of the Iranian researchers’ publications in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Global Research Report-Middle East 2011. (Accessed at http://researchanalytics.thomsonreuters.com/m/pdfs/globalresearchreport-aptme.pdf.)

  2. Iran is top of the world in science growth. 2011. (Accessed at http://www.newscientist.com/article/dn20291-iran-is-top-of-the-world-in-science-growth.html.)

  3. Malekafzali, H., Eftekhari, M. B., Peykari, N., et al. (2009). Research assessment of Iranian medical universities, an experience from a developing country. Iranian Journal of Public Health, 38, 3.

    Google Scholar 

  4. Baharvand, H., Ashtiani, S. K., Valojerdi, M. R., Shahverdi, A., Taee, A., & Sabour, D. (2004). Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst. Differentiation, 72, 224–229.

    Article  PubMed  Google Scholar 

  5. Baharvand, H., Ashtiani, S. K., Taee, A., et al. (2006). Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Development, Growth & Differentiation, 48, 117–128.

    Article  Google Scholar 

  6. Taei, A., Gourabi, H., Seifinejad, A., et al. (2010). Derivation of new human embryonic stem cell lines from preimplantation genetic screening and diagnosis-analyzed embryos. In Vitro Cellular and Developmental Biology Animal, 46, 395–402.

    Article  PubMed  Google Scholar 

  7. Nemati, S., Hatami, M., Kiani, S., et al. (2010). Long-Term Self-Renewable Feeder-Free Human Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells Devopment.

  8. Ghodsizadeh, A., Taei, A., Totonchi, M., et al. (2010). Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Reviews, 6, 622–632.

    Article  PubMed  Google Scholar 

  9. Arda, B., & Aciduman, A. (2009). An evaluation regarding the current situation of stem cell studies in Turkey. Stem Cell Reviews, 5, 130–134.

    Article  PubMed  Google Scholar 

  10. Druml, C. (2009). Stem cell research: toward greater unity in Europe? Cell, 139, 649–651.

    Article  PubMed  CAS  Google Scholar 

  11. Larijani, B., & Zahedi, F. (2004). Islamic perspective on human cloning and stem cell research. Transplantation Proceedings, 36, 3188–3189.

    Article  PubMed  CAS  Google Scholar 

  12. Zahedi, F., & Larijani, B. (2008). National bioethical legislation and guidelines for biomedical research in the Islamic Republic of Iran. Bulletin of the World Health Organization, 86, 630–634.

    Article  PubMed  Google Scholar 

  13. Aramesh, K., & Dabbagh, S. (2007). An Islamic view to stem cell research and cloning: Iran’s experience. The American Journal of Bioethics, 7, 62–63.

    Article  PubMed  Google Scholar 

  14. Saniei, M., & De Vries, R. (2008). Embryonic stem cell research in Iran: status and ethics. Indian Journal of Medical Ethics, 5, 181–184.

    PubMed  Google Scholar 

  15. Guidelines for research on gamete and embryo [Persian]. 2005. (Accessed at http://mehr.tums.ac.ir/ShowCode.aspx?CodeID=5&lang=fa.)

  16. Ilkilic, I., & Ertin, H. (2010). Ethical aspects of human embryonic stem cell research in the islamic world: positions and reflections. Stem Cell Reviews, 6, 151–161.

    Article  PubMed  Google Scholar 

  17. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102, 16569–16572.

    Article  PubMed  CAS  Google Scholar 

  18. Ghavamzadeh, A., Alimoghaddam, K., Jahani, M., et al. (2009). Stem cell transplantation; Iranian experience. Archives of Iranian Medicine, 12, 69–72.

    PubMed  Google Scholar 

  19. Fallahi-Sichani, M., Soleimani, M., Najafi, S. M., Kiani, J., Arefian, E., & Atashi, A. (2007). In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biology International, 31, 299–303.

    Article  PubMed  CAS  Google Scholar 

  20. Nadri, S., Soleimani, M., Mobarra, Z., & Amini, S. (2008). Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377, 423–428.

    Article  PubMed  CAS  Google Scholar 

  21. Mohammadi, R., Azizi, S., Delirezh, N., Hobbenaghi, R., & Amini, K. (2011). Comparison of beneficial effects of undifferentiated cultured bone marrow stromal cells and omental adipose-derived nucleated cell fractions on sciatic nerve regeneration. Muscle & Nerve, 43, 157–163.

    Article  Google Scholar 

  22. Azizi, H., Mehrjardi, N. Z., Shahbazi, E., Hemmesi, K., Bahmani, M. K., & Baharvand, H. (2010). Dehydroepiandrosterone stimulates neurogenesis in mouse embryonal carcinoma cell- and human embryonic stem cell-derived neural progenitors and induces dopaminergic neurons. Stem Cells and Development, 19, 809–818.

    Article  PubMed  CAS  Google Scholar 

  23. Sagha, M., Karbalaie, K., Tanhaee, S., et al. (2009). Neural induction in mouse embryonic stem cells by co-culturing with chicken somites. Stem Cells and Development, 18, 1351–1360.

    Article  PubMed  CAS  Google Scholar 

  24. Anjomshoa, M., Karbalaie, K., Mardani, M., et al. (2009). Generation of motor neurons by coculture of retinoic acid-pretreated embryonic stem cells with chicken notochords. Stem Cells and Development, 18, 259–267.

    Article  PubMed  CAS  Google Scholar 

  25. Nojehdehian, H., Moztarzadeh, F., Baharvand, H., Nazarian, H., & Tahriri, M. (2009). Preparation and surface characterization of poly-L-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Colloids and Surfaces. B, Biointerfaces, 73, 23–29.

    Article  PubMed  CAS  Google Scholar 

  26. Rahjouei, A., Kiani, S., Zahabi, A., Mehrjardi, N. Z., Hashemi, M., & Baharvand, H. (2011). Interactions of human embryonic stem cell-derived neural progenitors with an electrospun nanofibrillar surface in vitro. The International Journal of Artificial Organs, 34, 559–570.

    Article  PubMed  CAS  Google Scholar 

  27. Moghadam, F. H., Alaie, H., Karbalaie, K., Tanhaei, S., Nasr Esfahani, M. H., & Baharvand, H. (2009). Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation, 78, 59–68.

    Article  PubMed  CAS  Google Scholar 

  28. Fathi, F., Altiraihi, T., Mowla, S. J., & Movahedin, M. (2010). Transplantation of retinoic acid treated murine embryonic stem cells & behavioural deficit in Parkinsonian rats. Indian Journal of Medical Research, 131, 536–544.

    PubMed  CAS  Google Scholar 

  29. Seyed Jafari, S. S., Ali Aghaei, A., Asadi-Shekaari, M., Nematollahi-Mahani, S. N., & Sheibani, V. (2011). Investigating the effects of adult neural stem cell transplantation by lumbar puncture in transient cerebral ischemia. Neuroscience Letters, 495, 1–5.

    Article  PubMed  CAS  Google Scholar 

  30. Ali Khalili, M., Anvari, M., Hekmati-Moghadam, S. H., Sadeghian-Nodoushan, F., Fesahat, F., Miresmaeili, S. M. (2011). Therapeutic Benefit of Intravenous Transplantation of Mesenchymal Stem Cells After Experimental Subarachnoid Hemorrhage in Rats. Journal of Stroke and Cerebrovascular Diseases [Epub ehead of print].

  31. Edalatmanesh, M. A., Bahrami, A. R., Hosseini, E., Hosseini, M., & Khatamsaz, S. (2011). Bone marrow derived mesenchymal stem cell transplantation in cerebellar degeneration: A behavioral study. Behavioural Brain Research, 225, 63–70.

    Article  PubMed  Google Scholar 

  32. Hatami, M., Mehrjardi, N. Z., Kiani, S., et al. (2009). Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy, 11, 618–630.

    Article  PubMed  CAS  Google Scholar 

  33. Salehi, M., Pasbakhsh, P., Soleimani, M., et al. (2009). Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell. Iranian Biomedical Journal, 13, 125–135.

    PubMed  CAS  Google Scholar 

  34. Pedram, M. S., Dehghan, M. M., Soleimani, M., Sharifi, D., Marjanmehr, S. H., & Nasiri, Z. (2010). Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord, 48, 457–463.

    Article  PubMed  CAS  Google Scholar 

  35. Rabani, V., Shahsavani, M., Gharavi, M., Piryaei, A., Azhdari, Z., & Baharvand, H. (2010). Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. Cell Biology International, 34, 601–605.

    Article  PubMed  Google Scholar 

  36. Hashemi, S. M., Soleimani, M., Zargarian, S. S., et al. (2009). In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-caprolactone) nanofiber scaffolds. Cells, Tissues, Organs, 190, 135–149.

    Article  PubMed  CAS  Google Scholar 

  37. Kazemnejad, S., Allameh, A., Soleimani, M., et al. (2009). Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology, 24, 278–287.

    Article  PubMed  CAS  Google Scholar 

  38. Piryaei, A., Valojerdi, M. R., Shahsavani, M., & Baharvand, H. (2011). Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Reviews, 7, 103–118.

    Article  PubMed  CAS  Google Scholar 

  39. Farzaneh, Z., Pournasr, B., Ebrahimi, M., Aghdami, N., & Baharvand, H. (2010). Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Reviews, 6, 601–610.

    Article  PubMed  CAS  Google Scholar 

  40. Mohamadnejad, M., Namiri, M., Bagheri, M., et al. (2007). Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World Journal of Gastroenterology, 13, 3359–3363.

    PubMed  CAS  Google Scholar 

  41. Nikeghbalian, S., Pournasr, B., Aghdami, N., et al. (2011). Autologous transplantation of bone marrow-derived mononuclear and CD133(+) cells in patients with decompensated cirrhosis. Archives of Iranian Medicine, 14, 12–17.

    PubMed  Google Scholar 

  42. Kharaziha, P., Hellstrom, P. M., Noorinayer, B., et al. (2009). Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. European Journal of Gastroenterology and Hepatology, 21, 1199–1205.

    Article  PubMed  CAS  Google Scholar 

  43. Mohamadnejad, M., Pournasr, B., Bagheri, M., et al. (2010). Transplantation of allogeneic bone marrow mesenchymal stromal cell-derived hepatocyte-like cells in homozygous familial hypercholesterolemia. Cytotherapy, 12, 566–568.

    Article  PubMed  Google Scholar 

  44. Baharvand, H., Hajheidari, M., Zonouzi, R., Ashtiani, S. K., Hosseinkhani, S., & Salekdeh, G. H. (2006). Comparative proteomic analysis of mouse embryonic stem cells and neonatal-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 349, 1041–1049.

    Article  PubMed  CAS  Google Scholar 

  45. Khezri, S., Valojerdi, M. R., Sepehri, H., & Baharvand, H. (2007). Effect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cells. Saudi Medical Journal, 28, 181–186.

    PubMed  Google Scholar 

  46. Taha, M. F., Valojerdi, M. R., & Mowla, S. J. (2007). Effect of bone morphogenetic protein-4 (BMP-4) on cardiomyocyte differentiation from mouse embryonic stem cell. International Journal of Cardiology, 120, 92–101.

    Article  PubMed  Google Scholar 

  47. Hatami, L., Valojerdi, M. R., & Mowla, S. J. (2007). Effects of oxytocin on cardiomyocyte differentiation from mouse embryonic stem cells. International Journal of Cardiology, 117, 80–89.

    Article  PubMed  Google Scholar 

  48. Baharvand, H., Azarnia, M., Parivar, K., & Ashtiani, S. K. (2005). The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 38, 495–503.

    Article  PubMed  CAS  Google Scholar 

  49. Nassiri, S. M., Khaki, Z., Soleimani, M., et al. (2007). The similar effect of transplantation of marrow-derived mesenchymal stem cells with or without prior differentiation induction in experimental myocardial infarction. Journal of Biomedical Science, 14, 745–755.

    Article  PubMed  Google Scholar 

  50. Soleimani, M., Mohammadi, Y., Ahmadbeigi, N., et al. (2008). Tissue cardiomyoplasty using multi-layer cell-seeded nano-structural scaffolds to repair damaged myocardium: An experimental pilot study. Archives of Medical Science, 4, 364–370.

    Google Scholar 

  51. Mohyeddin-Bonab, M., Mohamad-Hassani, M. R., Alimoghaddam, K., et al. (2007). Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Archives of Iranian Medicine, 10, 467–473.

    PubMed  Google Scholar 

  52. Zeinaloo, A., Zanjani, K. S., Bagheri, M. M., Mohyeddin-Bonab, M., Monajemzadeh, M., Arjmandnia, M. H. (2010). Intracoronary administration of autologous mesenchymal stem cells in a critically ill patient with dilated cardiomyopathy. Pediatric Transplantation [Epub ehead of print].

  53. Ahmadi, H., Baharvand, H., Ashtiani, S. K., et al. (2007). Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction. Current Neurovascular Research, 4, 153–160.

    Article  PubMed  Google Scholar 

  54. Zafarghandi, M. R., Ravari, H., Aghdami, N., et al. (2010). Safety and efficacy of granulocyte-colony-stimulating factor administration following autologous intramuscular implantation of bone marrow mononuclear cells: a randomized controlled trial in patients with advanced lower limb ischemia. Cytotherapy, 12, 783–791.

    Article  PubMed  CAS  Google Scholar 

  55. Gheisari, Y., Soleimani, M., Zeinali, S., Arefian, E., Atashi, A., & Zarif, M. N. (2009). Isolation of stem cells from adult rat kidneys. Biocell, 33, 33–38.

    PubMed  CAS  Google Scholar 

  56. Gheisari, Y., Nassiri, S. M., Arefian, E., et al. (2010). Severely damaged kidneys possess multipotent renoprotective stem cells. Cytotherapy, 12, 303–312.

    Article  PubMed  CAS  Google Scholar 

  57. Gheisari, Y., Ahmadbeigi, N., Naderi, M., Nassiri, S. M., Nadri, S., & Soleimani, M. (2011). Stem cell-conditioned medium does not protect against kidney failure. Cell Biology International, 35, 209–213.

    Article  PubMed  Google Scholar 

  58. Kajbafzadeh, A. M., Payabvash, S., Salmasi, A. H., et al. (2007). Time-dependent neovasculogenesis and regeneration of different bladder wall components in the bladder acellular matrix graft in rats. Journal of Surgical Research, 139, 189–202.

    Article  PubMed  CAS  Google Scholar 

  59. Kajbafzadeh, A. M., Esfahani, S. A., Talab, S. S., Elmi, A., & Monajemzadeh, M. (2011). In-vivo autologous bladder muscular wall regeneration: application of tissue-engineered pericardium in a model of bladder as a bioreactor. Journal of Pediatric Urology, 7, 317–323.

    Article  PubMed  Google Scholar 

  60. Akrami, H., Soheili, Z. S., Sadeghizadeh, M., et al. (2011). Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane. Biochemical Genetics, 49, 313–322.

    Article  PubMed  CAS  Google Scholar 

  61. Ghaderi, S., Soheili, Z. S., Ahmadieh, H., et al. (2011). Human amniotic fluid promotes retinal pigmented epithelial cells’ trans-differentiation into rod photoreceptors and retinal ganglion cells. Stem Cells and Development, 20, 1615–1625.

    Article  PubMed  CAS  Google Scholar 

  62. Ahmadiankia, N., Ebrahimi, M., Hosseini, A., & Baharvand, H. (2009). Effects of different extracellular matrices and co-cultures on human limbal stem cell expansion in vitro. Cell Biology International, 33, 978–987.

    Article  PubMed  CAS  Google Scholar 

  63. Baharvand, H., Heidari, M., Ebrahimi, M., Valadbeigi, T., & Salekdeh, G. H. (2007). Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell niche. Molecular Vision, 13, 1711–1721.

    PubMed  CAS  Google Scholar 

  64. Baradaran-Rafii, A., Javadi, M. A., Rezaei Kanavi, M., Eslani, M., Jamali, H., & Karimian, F. (2010). Limbal stem cell deficiency in chronic and delayed-onset mustard gas keratopathy. Ophthalmology, 117, 246–252.

    Article  PubMed  Google Scholar 

  65. Javadi, M. A., & Baradaran-Rafii, A. (2009). Living-related conjunctival-limbal allograft for chronic or delayed-onset mustard gas keratopathy. Cornea, 28, 51–57.

    Article  PubMed  Google Scholar 

  66. Baradaran-Rafii, A., Ebrahimi, M., Kanavi, M. R., et al. (2010). Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea, 29, 502–509.

    Article  PubMed  Google Scholar 

  67. Betz, R. R. (2002). Limitations of autograft and allograft: new synthetic solutions. Orthopedics, 25, s561–s570.

    PubMed  Google Scholar 

  68. Mohammadi, Y., Soleimani, M., Fallahi-Sichani, M., et al. (2007). Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. The International Journal of Artificial Organs, 30, 204–211.

    PubMed  CAS  Google Scholar 

  69. Seyedjafari, E., Soleimani, M., Ghaemi, N., & Sarbolouki, M. N. (2011). Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. Journal of Materials Science Materials in Medicine, 22, 165–174.

    Article  PubMed  CAS  Google Scholar 

  70. Seyedjafari, E., Soleimani, M., Ghaemi, N., Shabani, I. (2010). Nanohydroxyapatite-Coated Electrospun Poly(l-lactide) Nanofibers Enhance Osteogenic Differentiation of Stem Cells and Induce Ectopic Bone Formation. Biomacromolecules [Epub ehead of print].

  71. Shafiee, A., Seyedjafari, E., Soleimani, M., Ahmadbeigi, N., Dinarvand, P., & Ghaemi, N. (2011). A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnology Letters, 33, 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  72. Shayesteh, Y. S., Khojasteh, A., Soleimani, M., Alikhasi, M., Khoshzaban, A., & Ahmadbeigi, N. (2008). Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 106, 203–209.

    Article  PubMed  Google Scholar 

  73. Behnia, H., Khojasteh, A., Soleimani, M., et al. (2009). Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 108, e1–e6.

    PubMed  Google Scholar 

  74. Bakhshayesh, M., Soleimani, M., Mehdizadeh, M., Katebi, M. (2011). Effects of TGF-beta and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model. Inflammation [Epub ehead of print].

  75. Babaeijandaghi, F., Shabani, I., Seyedjafari, E., et al. (2010). Accelerated epidermal regeneration and improved dermal reconstruction achieved by polyethersulfone nanofibers. Tissue Engineering Part A, 16, 3527–3536.

    Article  PubMed  CAS  Google Scholar 

  76. Maharlooei, M. K., Bagheri, M., Solhjou, Z., et al. (2011). Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Research and Clinical Practice, 93, 228–234.

    Article  PubMed  Google Scholar 

  77. Ravari, H., Hamidi-Almadari, D., Salimifar, M., Bonakdaran, S., Parizadeh, M. R., & Koliakos, G. (2011). Treatment of non-healing wounds with autologous bone marrow cells, platelets, fibrin glue and collagen matrix. Cytotherapy, 13, 705–711.

    Article  PubMed  CAS  Google Scholar 

  78. Khodadadi, L., Shafieyan, S., Sotoudeh, M., et al. (2010). Intraepidermal injection of dissociated epidermal cell suspension improves vitiligo. Archives of Dermatological Research, 302, 593–599.

    Article  PubMed  Google Scholar 

  79. Soleimani, M., & Nadri, S. (2009). A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 4, 102–106.

    Article  PubMed  CAS  Google Scholar 

  80. Ahmadbeigi, N., Shafiee, A., Seyedjafari, E., et al. (2011). Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Proliferation, 44, 67–74.

    Article  PubMed  CAS  Google Scholar 

  81. Ahmadbeigi, N., Soleimani, M., Gheisari, Y., et al. (2011). Dormant phase and multinuclear cells: two key phenomena in early culture of murine bone marrow mesenchymal stem cells. Stem Cells and Development, 20, 1337–1347.

    Article  PubMed  CAS  Google Scholar 

  82. Kazemnejad, S., Allameh, A., Gharehbaghian, A., Soleimani, M., Amirizadeh, N., & Jazayeri, M. (2008). Efficient replacing of fetal bovine serum with human platelet releasate during propagation and differentiation of human bone-marrow-derived mesenchymal stem cells to functional hepatocyte-like cells. Vox Sanguinis, 95, 149–158.

    Article  PubMed  CAS  Google Scholar 

  83. Gheisari, Y., Soleimani, M., Azadmanesh, K., & Zeinali, S. (2008). Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy, 10, 815–823.

    Article  PubMed  CAS  Google Scholar 

  84. Larijani, M. R., Seifinejad, A., Pournasr, B., et al. (2011). Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem Cells and Development, 20, 1911–1923.

    Article  PubMed  CAS  Google Scholar 

  85. Baharvand, H., Salekdeh, G. H., Taei, A., & Mollamohammadi, S. (2010). An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nature Protocols, 5, 588–594.

    Article  PubMed  CAS  Google Scholar 

  86. Hassani, S. N., Totonchi, M., Farrokhi, A., et al. (2011). Simultaneous Suppression of TGF-beta and ERK Signaling Contributes to the Highly Efficient and Reproducible Generation of Mouse Embryonic Stem Cells from Previously Considered Refractory and Non-permissive Strains. Stem Cell Reviews [Epub ehead of print].

  87. Hashemi, S. M., Soudi, S., Shabani, I., Naderi, M., & Soleimani, M. (2011). The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials, 32, 7363–7374.

    Article  PubMed  CAS  Google Scholar 

  88. Shabani, I., Haddadi-Asl, V., Seyedjafari, E., Babaeijandaghi, F., & Soleimani, M. (2009). Improved infiltration of stem cells on electrospun nanofibers. Biochemical and Biophysical Research Communications, 382, 129–133.

    Article  PubMed  CAS  Google Scholar 

  89. Mohajeri, S., Hosseinkhani, H., Ebrahimi, N. G., Nikfarjam, L., Soleimani, M., & Kajbafzadeh, A. M. (2010). Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephthalate blend fibers. Tissue Engineering Part A, 16, 3821–3830.

    Article  PubMed  CAS  Google Scholar 

  90. Ranjbarvaziri, S., Kiani, S., Akhlaghi, A., Vosough, A., Baharvand, H., & Aghdami, N. (2011). Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials, 32, 5195–5205.

    Article  PubMed  CAS  Google Scholar 

  91. Flynn, J. M., & Matthews, K. R. (2010). Stem cell research in the Greater Middle East: the importance of establishing policy and ethics interoperability to foster international collaborations. Stem Cell Reviews, 6, 143–150.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mitra Karimi for helpful suggestions and Dr. Payam Kabiri for assistance with bibliometric studies. We hereby extend our sincere apologies to the Iranian investigators whose studies could not be cited in this review due to space restrictions. This work was supported by the Iranian council for stem cell research and technology development.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Vasei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheisari, Y., Baharvand, H., Nayernia, K. et al. Stem Cell and Tissue Engineering Research in the Islamic Republic of Iran. Stem Cell Rev and Rep 8, 629–639 (2012). https://doi.org/10.1007/s12015-011-9343-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9343-6

Keywords

Navigation