Skip to main content

Advertisement

Log in

Diet-induced obesity, exogenous leptin-, and MADB106 tumor cell challenge affect tissue leukocyte distribution and serum levels of cytokines in F344 rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The adipocyte-derived catabolic protein leptin alters cell-mediated immunity and cytokine crosstalk. This may provide new insights into the altered immune response, seen in obese individuals. Therefore, we determined the tissue distribution of immune cells in diet-induced obese (dio) and normal weight F344 rats challenged with MADB106 tumor cells or leptin. Immune cell distribution in blood (by FACS analysis) and tissues (NK cells in spleen and liver, immunohistologically) as well as pro-inflammatory cytokines (IL-6, TNF-α; by flow cytometry) were investigated in 28 normal weight and 28 dio rats (n = 4–6/group). Pro-inflammatory cytokines were increased 3-fold for IL-6 and 7-fold for TNF-α in obese animals. Higher numbers of blood monocytes and NK cells were found in obese as compared to normal weight animals. In dio rats challenged with leptin and MADB106 tumor cells, monocyte numbers were decreased as compared to the obese control animals. Immunohistochemistry revealed an altered NK cell distribution in a compartment-, treatment-, and bodyweight-specific manner. In conclusion, our data reveal a distinct distribution pattern of monocytes and NK cells in dio rats as compared to normal weight littermates and an additional modulatory effect of a leptin- and MADB106 tumor cell challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Bulló, P. García-Lorda, I. Megias, J. Salas-Salvadó, Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes. Res. 11, 525–531 (2003)

    Article  PubMed  Google Scholar 

  2. J.N. Fain, Release of interleukin and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to nonfat cells. Vitam. Horm. 74, 443–477 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. V.D. Dixit, Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. J. Leukoc. Biol. 84, 882–892 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. A. Mori, H. Sakurai, M.K. Choo, R. Obi, K. Koizumi, C. Yoshida, Y. Shimada, I. Saiki, Severe pulmonary metastasis in obese and diabetic mice. Int. J. Cancer 119, 2760–2767 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. D.P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C.L. Birmingham, A.H. Anis, The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88 (2009)

    Article  PubMed  Google Scholar 

  6. G. Brabant, H. Nave, B. Mayr, M. Behrend, V. van Hermelen, P. Arner, Secretion of free and protein-bound leptin from subcutaneous adipose tissue of lean and obese women. J. Clin. Endocrinol. Metab. 87, 3966–3970 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. P.J. Scarpace, Y. Zhang, Leptin resistance: a predisposing factor for diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, 493–500 (2009)

    Google Scholar 

  8. C. Martin-Romero, J. Santos-Alvarez, R. Goberna, V. Sanchez-Margalet, Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell. Immunol. 199, 15–24 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. E. Papathanassoglou, K. El-Haschimi, X.C. Li, G. Matarese, T. Strom, C. Mantzoros, Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J. Immunol. 176, 7745–7752 (2006)

    CAS  PubMed  Google Scholar 

  10. Y. Zhao, R. Sun, L. You, C. Gao, Z. Tian, Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem. Biophys. Res. Commun. 300, 247–252 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. S. Ouyang, F. He, Phylogeny of a growth hormone-like cytokine superfamily based upon 3D structure. J. Mol. Evol. 56, 131–136 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. H. Baumann, K.K. Morella, D.W. White, M. Dembski, P.S. Bailon, H. Kim, C.F. Lai, L.A. Tartaglia, The full-length leptin receptor has signalling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sci. U.S.A. 93, 8374–8378 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. R. Pecoits-Filho, L. Nordfors, O. Heimbürger, B. Lindholm, B. Anderstam, A. Marchlewska, P. Stenvinkel, Soluble leptin receptors and serum leptin in end-stage renal disease: relationship with inflammation and body composition. Eur. J. Clin. Invest. 32, 811–881 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. R. Faggioni, K.R. Feingold, C. Grunfeld, Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J. 15, 2565–2571 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. K. Claycombe, L.E. King, P.J. Fraker, A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl. Acad. Sci. U.S.A. 105, 2017–2021 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. G. Matarese, S. Moschos, C.S. Mantzoros, Leptin in immunology. J. Immunol. 174, 3137–3142 (2005)

    CAS  PubMed  Google Scholar 

  17. V. Sánchez-Margalet, C. Martín-Romero, J. Santos-Alvarez, R. Goberna, S. Najib, C. Gonzalez-Yanes, Role of leptin as an immunomodulator of blood mononuclear cells: mechanism of action. Clin. Exp. Immunol. 133, 11–19 (2003)

    Article  PubMed  Google Scholar 

  18. J.M. Friedman, R.L. Leibel, D.S. Siegel, J. Walsh, N. Bahary, Molecular mapping of the mouse ob mutation. Genomics 11, 1054–1062 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. R. Faggioni, G. Fantuzzi, C. Gabay, A. Moser, C.A. Dinarello, K.R. Feingold, C. Grunfeld, Leptin deficiency enhances sensitivity to endotoxin-induced lethality. Am. J. Physiol. 276, 136–142 (1999)

    Google Scholar 

  20. R. Faggioni, A. Moser, K.R. Feingold, C. Grunfeld, Reduced leptin levels in starvation increase susceptibility to endotoxic shock. Am. J. Pathol. 156, 1781–1787 (2000)

    CAS  PubMed  Google Scholar 

  21. A. Hsu, D.M. Aronoff, J. Phipps, D. Goel, P. Mancuso, Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin. Exp. Immunol. 150, 332–339 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. N. Mito, H. Yoshino, T. Hosoda, K. Sato, Analysis of the effect of leptin on the immune function in vivo using diet-induced obese mice. J. Endocrinol. 180, 167–173 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. H. Nave, G. Mueller, B. Siegmund, R. Jacobs, T. Stroh, U. Schueler, M. Hopfe, P. Behrendt, T. Buchenauer, R. Pabst, G. Brabant, Resistance of Janus kinase-2 dependent leptin signaling in natural killer (NK) cells: a novel mechanism of NK cell dysfunction in diet-induced obesity. Endocrinology 149, 3370–3378 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. A.E. Bigorgne, L. Bouchet-Delbos, S. Naveau, I. Dagher, S. Prévot, I. Durand-Gasselin, J. Couderc, P. Valet, D. Emilie, G. Perlemuter, Obesity-induced lymphocyte hyperresponsiveness to chemokines: a new mechanism of Fatty liver inflammation in obese mice. Gastroenterology 134, 1459–1469 (2008)

    Article  PubMed  Google Scholar 

  25. K. Shingu, A. Helfritz, S. Kuhlmann, M. Zielinska-Skowronek, R. Jacobs, R.E. Schmidt, R. Pabst, S. von Hörsten, Kinetics of the early recruitment of leukocyte subsets at the site of tumor cells in the lungs: natural killer (nk) cells rapidly attract monocytes but not lymphocytes in the surveillance of micrometastasis. Int. J. Cancer 99, 74–81 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. T. Barlozzari, J. Leonhardt, R.H. Wiltrout, R.B. Herberman, C.W. Reynolds, Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J. Immunol. 134, 2783–2789 (1985)

    CAS  PubMed  Google Scholar 

  27. S. von Hörsten, A. Helfritz, S. Kuhlmann, H. Nave, T. Tschernig, R. Pabst, S. Ben-Eliyahu, D. Meyer, R.E. Schmidt, C. Schmitz, Stereological quantification of carboxyfluorescein-labeled rat lung metastasis: a new method for the assessment of natural killer cell activity and tumor adhesion in vivo and in situ. J. Immunol. Methods 239, 25–34 (2000)

    Article  Google Scholar 

  28. M. Felies, S. Poppendieck, H. Nave, Perioperative normothermia depends on intraoperative warming procedure, extent of surgical intervention and age of the experimental animal. Life Sci. 77, 3133–3140 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. S. Bedoui, S. Kuhlmann, H. Nave, J. Drube, R. Pabst, S. von Hörsten, Differential effects of neuropeptide Y (NPY) on leukocyte subsets in the blood: mobilization of B-1 like B-lymphocytes and activated monocytes. J. Neuroimmunol. 117, 125–132 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. V. Grau, A. Scriba, O. Stehling, B. Steiniger, Monocytes in the rat. Immunobiology 202, 94–103 (2000)

    CAS  PubMed  Google Scholar 

  31. H. Tilg, A.R. Moschen, Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. J.I. Fenton, N.P. Nuñez, S. Yakar, S.N. Perkins, N.G. Hord, S.D. Hursting, Diet-induced adiposity alters the serum profile of inflammation in C57BL/6N mice as measured by antibody array. Diabetes Obes. Metab 11, 343–354 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. N. Sato Mito, M. Suzui, H. Yoshino, T. Kaburagi, K. Sato, Long term effects of high fat and sucrose diets on obesity and lymphocyte proliferation in mice. J. Nutr. Health Aging 13, 602–606 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Q.L. Lam, S. Liu, X. Cao, L. Lu, Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells. Eur. J. Immunol. 36, 3118–3130 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. B. Mattioli, E. Straface, M.G. Quaranta, L. Giordani, M. Viora, Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol. 174, 6820–6828 (2005)

    CAS  PubMed  Google Scholar 

  36. Z. Tian, R. Sun, H. Wei, B. Gao, Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem. Biophys. Res. Commun. 298, 297–302 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. A. Klemm, T. Tschernig, N. Krug, R. Pabst, Lymphocyte subsets in distinct lung compartments show a different ability to produce interferon-gamma IFN-γ during a pulmonary immune response. Clin. Exp. Immunol. 113, 252–257 (1998)

    Article  CAS  PubMed  Google Scholar 

  38. R.D. Berahovich, N.L. Lai, Z. Wei, L.L. Lanier, T.J. Schall, Evidence for NK cell subsets based on chemokine receptor expression. J. Immunol. 177, 7833–7840 (2006)

    CAS  PubMed  Google Scholar 

  39. H.B. Bernstein, M.C. Plastere, S.E. Schiff, S. Kitchen, J.A. Zack, CD4 expression on activated NK cells: ligation of CD4 induces cytokine expression and cell migration. J. Immunol. 177, 3669–3676 (2006)

    CAS  PubMed  Google Scholar 

  40. D. Briard, B. Azzarone, D. Brouty-Boyé, Importance of stromal determinants in the generation of dendritic and natural killer cells in the human spleen. Clin. Exp. Immunol. 140, 265–273 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. A.G. Freud, A. Yokohama, B. Becknell, M.T. Lee, H.C. Mao, A.K. Ferketich, M.A. Caligiuri, Evidence for discrete stages of human natural killer cell differentiation in vivo. J. Exp. Med. 203, 1033–1043 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. F. Gays, K. Martin, R. Kenefeck, J.G. Aust, C.G. Brooks, Multiple cytokines regulate the NK gene complex-encoded receptor repertoire of mature NK cells and T cells. J. Immunol. 175, 2938–2947 (2005)

    CAS  PubMed  Google Scholar 

  43. A. Klonz, K. Wonigeit, R. Pabst, J. Westermann, The marginal blood pool of the rat contains not only granulocytes, but also lymphocytes, NK-cells and monocytes: a second intravascular compartment, its cellular composition, adhesion molecule expression and interaction with the peripheral blood pool. Scand. J. Immunol. 44, 461–469 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of I. Dressendörfer, S. Faßbender, and S. Kuhlmann is very much appreciated. We thank J. Schade for her help with the MADB106 cell staining. This study was supported by a grant from the Danone Foundation, Haar, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Nave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrendt, P., Buchenauer, T., Horn, R. et al. Diet-induced obesity, exogenous leptin-, and MADB106 tumor cell challenge affect tissue leukocyte distribution and serum levels of cytokines in F344 rats. Endocr 38, 104–112 (2010). https://doi.org/10.1007/s12020-010-9358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9358-9

Keywords

Navigation