Skip to main content

Advertisement

Log in

Beta-Amyloid Monomer and Insulin/IGF-1 Signaling in Alzheimer's Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer's disease is the most common form of dementia among older people and is still untreatable. While β-amyloid protein is recognized as the disease determinant with a pivotal role in inducing neuronal loss and dementia, an impaired brain insulin signaling seems to account in part for the cognitive deficit associated with the disease. The origin of this defective signaling is uncertain. Accumulating toxic species of β-amyloid, the so-called oligomers, has been proposed to be responsible for downregulation of neuronal insulin receptors. We have found that the nontoxic form of β-amyloid, the monomer, is able to activate insulin/insulin-like growth factor-1 (IGF-1) receptor signaling and thus behaves as a neuroprotectant agent. Our suggestion is that depletion of β-amyloid monomers, occurring in the preclinical phase of Alzheimer's disease, might be the cause of early insulin/IGF-1 signaling disturbances that anticipate cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Burns A, Byrne EJ, Maurer K (2002) Alzheimer's disease. Lancet 360:163–165

    Article  PubMed  Google Scholar 

  2. Selkoe DJ (2011) Resolving controversies on the paths to Alzheimer's therapeutics. Nat Med 17:1060–1065

    Article  PubMed  CAS  Google Scholar 

  3. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  PubMed  CAS  Google Scholar 

  4. Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer's disease. Front Biosci (Elite Ed) 4:976–997

    Google Scholar 

  5. Piriz J, Muller A, Trejo JL, Torres-Aleman I (2011) IGF-I and the aging mammalian brain. Exp Gerontol 46:96–99

    Article  PubMed  CAS  Google Scholar 

  6. Ledesma MD, Dotti CG (2012) Peripheral cholesterol, metabolic disorders and Alzheimer's disease. Front Biosci (Elite Ed) 4:181–194

    Google Scholar 

  7. de la Monte SM (2012) Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease. Drugs 72:49–66

    Article  PubMed  Google Scholar 

  8. Stranahan AM, Mattson MP (2011) Metabolic reserve as a determinant of cognitive aging. J Alzheimers Dis 28:1–9

    Google Scholar 

  9. Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl) 82:510–529

    Article  Google Scholar 

  10. de la Monte SM (2012) Therapeutic targets of brain insulin resistance in sporadic Alzheimer's disease. Front Biosci (Elite Ed) 4:1582–1605

    Google Scholar 

  11. Caselli RJ, Chen K, Lee W, Alexander GE, Reiman EM (2008) Correlating cerebral hypometabolism with future memory decline in subsequent converters to amnestic pre-mild cognitive impairment. Arch Neurol 65:1231–1236

    Article  PubMed  Google Scholar 

  12. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872

    Article  PubMed  CAS  Google Scholar 

  13. Schechter R, Whitmire J, Holtzclaw L, George M, Harlow R, Devaskar SU (1992) Developmental regulation of insulin in the mammalian central nervous system. Brain Res 582:27–37

    Article  PubMed  CAS  Google Scholar 

  14. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623

    Article  PubMed  CAS  Google Scholar 

  15. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277:39684–39695

    Article  PubMed  CAS  Google Scholar 

  16. Craft S, Stennis Watson G (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet 3:169–178

    Article  CAS  Google Scholar 

  17. Park CR, Seeley RJ, Craft S, Woods SC (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 68:509–514

    Article  PubMed  CAS  Google Scholar 

  18. Werther GA, Hogg A, Oldfiedl BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FAO (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121:1562–1570

    Article  PubMed  CAS  Google Scholar 

  19. Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    PubMed  CAS  Google Scholar 

  20. Zhao W-T, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  PubMed  CAS  Google Scholar 

  21. Lucignani G, Namba H, Nehlig A, Porrino L, Kennedy C, Sokoloff L (1987) Effects of insulin on local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 7:309–314

    Article  PubMed  CAS  Google Scholar 

  22. Doyle P, Cusin I, Rohner-Jeanrenaud F, Jeanrenaud B (1995) Four-day hyperinsulinemia in euglycemic conditions alters local cerebral glucose utilization in specific brain nuclei of freely moving rats. Brain Res 684:47–55

    Article  PubMed  CAS  Google Scholar 

  23. Livingstone C, Lyall H, Gould G (1995) Hypothalamic GLUT4 expression: a glucose- and insulin-sensing mechanism? Mol Cell Endocrinol 107:67–70

    Article  PubMed  CAS  Google Scholar 

  24. Apelt J, Mehlhorn G, Schliebs R (1999) Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci Res 57:693–705

    Article  PubMed  CAS  Google Scholar 

  25. McEwen BS, Reagan LP (2004) Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 490:13–24

    Article  PubMed  CAS  Google Scholar 

  26. Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, Birnbaum MJ (1999) The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 274:17934–17940

    Article  PubMed  CAS  Google Scholar 

  27. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  28. Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31

    Article  PubMed  CAS  Google Scholar 

  29. Bailyes EM, Navé BT, Soos MA, Orr SR, Hayward AC, Siddle K (1997) Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J 327:209–215

    PubMed  CAS  Google Scholar 

  30. Soos MA, Field CE, Siddle K (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J 290:419–426

    PubMed  CAS  Google Scholar 

  31. Kasuya J, Paz IB, Maddux BA, Goldfine ID, Hefta SA, Fujita-Yamaguchi Y (1993) Characterization of human placental insulin-like growth factor-I/insulin hybrid receptors by protein microsequencing and purification. Biochemistry 32:13531–13536

    Article  PubMed  CAS  Google Scholar 

  32. Bondy C, Werner H, Roberts CT Jr, LeRoith D (1992) Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46:909–923

    Article  PubMed  CAS  Google Scholar 

  33. Torres-Aleman I (2010) Towards a comprehensive neurobiology of IGF-1. Dev Neurobiol 70:384–396

    PubMed  CAS  Google Scholar 

  34. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97:10236–10241

    Article  PubMed  CAS  Google Scholar 

  35. Aberg MA, Aberg ND, Hedbäcker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20:2896–2903

    PubMed  CAS  Google Scholar 

  36. Nunez A, Carro E, Torres-Aleman I (2003) Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol 89:3008–3017

    Article  PubMed  CAS  Google Scholar 

  37. Trejo JL, Carro E, Nunez A, Torres-Aleman I (2002) Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev Neurosci 13:365–374

    PubMed  CAS  Google Scholar 

  38. Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I (2004) Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med 82:156–162

    Article  PubMed  CAS  Google Scholar 

  39. Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy F, Soya H, Nuñez A, Torres-Aleman I (2010) Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67:834–846

    Article  PubMed  CAS  Google Scholar 

  40. Fernandez AM, Kim JK, Yakar S, Dupont J, Hernandez- Sanchez C, Castle AL, Filmore J, Shulman GI, Le Roith D (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15:1926–1934

    Article  PubMed  CAS  Google Scholar 

  41. Denley A, Carroll JM, Brierley GV, Cosgrove L, Wallace J, Forbes B, Roberts CT Jr (2007) Differential activation of insulin receptor substrates 1 and 2 by insulin-like growth factor-activated insulin receptors. Mol Cell Biol 27:3569–3577

    Article  PubMed  CAS  Google Scholar 

  42. Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26:916–943

    Article  PubMed  CAS  Google Scholar 

  43. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J Neural Transm 105:423–438

    Article  PubMed  CAS  Google Scholar 

  44. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 7:63–80

    PubMed  CAS  Google Scholar 

  45. Hoyer S (2002) The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neural Transm 109:341–360

    Article  PubMed  CAS  Google Scholar 

  46. Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R, O'Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243

    Article  PubMed  CAS  Google Scholar 

  47. Kappeler L, De Magalhaes Filho CM, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le BY, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6:e254

    Article  PubMed  Google Scholar 

  48. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Küstermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Brüning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105

    Article  PubMed  CAS  Google Scholar 

  49. Park SA (2011) A common pathogenic mechanism linking type-2 diabetes and Alzheimer's disease: evidence from animal models. J Clin Neurol 7:10–18

    Article  PubMed  Google Scholar 

  50. Lannfelt L, Folkesson R, Mohammed AH, Winblad B, Hellgren D, Duff K, Hardy J (1993) Alzheimer's disease: molecular genetics and transgenic animal models. Behav Brain Res 57:207–213

    Article  PubMed  CAS  Google Scholar 

  51. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the rotterdam study. Neurology 53:1937–1942

    Article  PubMed  CAS  Google Scholar 

  52. Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    Article  PubMed  CAS  Google Scholar 

  53. Grünblatt E, Hoyer S, Riederer P (2004) Gene expression profile in streptozotocin rat model for sporadic Alzheimer's disease. J Neural Transm 111:367–386

    Article  PubMed  Google Scholar 

  54. Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    Article  PubMed  Google Scholar 

  55. Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 abetaPP-overexpressing mice. J Alzheimers Dis 19:691–704

    PubMed  CAS  Google Scholar 

  56. Cirrito JR, May PC, O'Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, Demattos RB, Holtzman DM. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci. 23: 8844-8853

  57. Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione B, Zlokovic BV (1998) Human blood–brain barrier receptors for Alzheimer's amyloid-beta 1-40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734–743

    Article  PubMed  CAS  Google Scholar 

  58. Eckman EA, Eckman CB (2005) Abeta-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 33:1101–1105

    Article  PubMed  CAS  Google Scholar 

  59. Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging 27:190–198

    Article  PubMed  CAS  Google Scholar 

  60. Nag S, Sarkar B, Bandyopadhyay A, Sahoo B, Sreenivasan VK, Kombrabail M, Muralidharan C, Maiti S (2011) Nature of the amyloid-beta monomer and the monomer-oligomer equilibrium. J Biol Chem 286:13827–13833

    Article  PubMed  CAS  Google Scholar 

  61. De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, De Deyn PP, Coart E, Hansson O, Minthon L, Zetterberg H, Blennow K, Shaw L, Trojanowski JQ (2010) Alzheimer's disease neuroimaging initiative. Arch Neurol 67:949–956

    Article  PubMed  Google Scholar 

  62. Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5:121–142

    Article  PubMed  CAS  Google Scholar 

  63. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 155:853–862

    Article  PubMed  CAS  Google Scholar 

  64. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492

    Article  PubMed  CAS  Google Scholar 

  65. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  66. Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, Spooner ET, Jiang L, Anwyl R, Selkoe DJ, Rowan MJ (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11:556–561

    Article  PubMed  CAS  Google Scholar 

  67. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  68. Copani A, Guccione S, Giurato L, Caraci F, Calafiore M, Sortino MA, Nicoletti F (2008) The cell cycle molecules behind neurodegeneration in Alzheimer's disease: perspectives for drug development. Curr Med Chem 15:2420–2432

    Article  PubMed  CAS  Google Scholar 

  69. Fändrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol. doi:10.1016/j.jmb.2012.01.006

  70. Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA (2003) The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci 23:5531–5535

    PubMed  CAS  Google Scholar 

  71. Soucek T, Cumming R, Dargusch R, Maher P, Schubert D (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39:43–56

    Article  PubMed  CAS  Google Scholar 

  72. Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243:1488–1490

    Article  PubMed  CAS  Google Scholar 

  73. Harrison SM, Harper AJ, Hawkins J, Duddy G, Grau E, Pugh PL, Winter PH, Shilliam CS, Hughes ZA, Dawson LA, Gonzalez MI, Upton N, Pangalos MN, Dingwall C (2203) BACE1 (beta-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol Cell Neurosci 24:646–655

    Article  Google Scholar 

  74. Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron 41:27–33

    Article  PubMed  CAS  Google Scholar 

  75. Wang H, Song L, Laird F, Wong PC, Lee HK (2008) BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus. J Neurosci 28:8677–8681

    Article  PubMed  CAS  Google Scholar 

  76. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545

    Article  PubMed  CAS  Google Scholar 

  77. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  PubMed  CAS  Google Scholar 

  78. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I (2009) Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12:1567–1576

    Article  PubMed  CAS  Google Scholar 

  79. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    PubMed  CAS  Google Scholar 

  80. Sudoh S, Frosch MP, Wolf BA (2002) Differential effects of proteases involved in intracellular degradation of amyloid beta-protein between detergent-soluble and -insoluble pools in CHO-695 cells. Biochemistry 41:1091–1099

    Article  PubMed  CAS  Google Scholar 

  81. Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci 24:11120–11126

    Article  PubMed  CAS  Google Scholar 

  82. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397

    Article  PubMed  CAS  Google Scholar 

  83. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr (1998) Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein e genotype. Neurology 50:164–168

    Article  PubMed  CAS  Google Scholar 

  84. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    Article  PubMed  CAS  Google Scholar 

  85. Zhao WQ, Lacor PN, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2009) Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem 284:18742–18753

    Article  PubMed  CAS  Google Scholar 

  86. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A (2009) Beta-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587

    Article  PubMed  CAS  Google Scholar 

  87. Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102

    Article  PubMed  CAS  Google Scholar 

  88. Rankin CA, Sun Q, Gamblin TC (2007) Tau phosphorylation by GSK-3beta promotes tangle-like filament morphology. Mol Neurodegener 2:12

    Article  PubMed  Google Scholar 

  89. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain 132:1820–1832

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the source of funding that helped to support the writing of this article. The source is as follows: PRIN 2009 by the Italian Ministry of University and Research to A.C. The authors thank Dr. Giuseppe Pappalardo (CNR-IBB, Catania) for the helpful discussions on structural features and properties of β-amyloid.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ferdinando Nicoletti or Agata Copani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuffrida, M.L., Tomasello, F., Caraci, F. et al. Beta-Amyloid Monomer and Insulin/IGF-1 Signaling in Alzheimer's Disease. Mol Neurobiol 46, 605–613 (2012). https://doi.org/10.1007/s12035-012-8313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8313-6

Keywords

Navigation