Skip to main content
Log in

Windmill Palm Waste Fiber Used as a Sustainable Nonwoven Mat with Acoustic Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Although windmill palm fiber is an abundant cellulose resource, it has not been efficiently used owing to the lack of the basic knowledge of its structure and properties. In this study, the surface morphology of windmill palm fiber was modified using acetyl chloride and acetic anhydride to generate hydrophobic nonwoven mats with optimal acoustic properties. A scanning electron microscope, a specific surface porosimeter, an infrared spectrum, and a standing wave tube were used to examine the fiber’s micromorphology, pore structure, chemical composition, and sound absorption performance. Acetylation treatment damages the compact structure of the cell wall, resulting in the formation of nanoscale pores. Acetyl chloride changes the average pore diameter of fibers by 17 nm. When the polyvinyl alcohol content was 0.5 % and the surface density of mat was 0.140 g/cm2, the sound absorption coefficient for the acetic anhydride-modified fiber was 0.66, which is 65 % greater than that of the untreated windmill palm fiber nonwoven mat. The windmill palm fiber has good potential for application in wallpaper and filling materials used at home.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. J. Ibrahim, S. M. Sapuan, E. S. Zainudin, and M. Y. M. Zuhri, J. Appl. Polym. Sci., 9, 200 (2020).

    CAS  Google Scholar 

  2. J. Zhu, J. Li, C. Wang, and H. Wang, Forests, 10, 1130 (2019).

    Article  Google Scholar 

  3. C. J. Chen, G. C. Chen, X. Li, H. Y. Guo, and G. H. Wang, Cellulose, 24, 1611 (2017).

    Article  CAS  Google Scholar 

  4. M. Lahouioui, R. Ben Arfi, M. Fois, L. Ibos, and A. Ghorbal, Waste and Biomass Valorization, 11, 4441 (2020).

    Article  CAS  Google Scholar 

  5. K. Dong and X. Wang, Carbohydr. Polym., 255, 117369 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. X. H. Yang, S. W. Ren, W. B. Wang, X. Liu, F. X. Xin, and T. J. Lu, Compos. Sci. Technol., 118, 276 (2015).

    Article  CAS  Google Scholar 

  7. S. S. Pavlovic, S. B. Stankovic, A. Zekic, M. Nenadovic, D. M. Popovic, V. Milosavljevic, and G. B. Poparic, Cellulose, 26, 6543 (2019).

    Article  CAS  Google Scholar 

  8. Z. Ju, Q. He, H. Zhang, T. Zhan, L. Chen, S. Li, L. Hong, and X. Lu, Polym. Compos., 41, 2893 (2020).

    Article  CAS  Google Scholar 

  9. E. Taban, A. Khavanin, A. J. Jafari, M. Faridan, and A. K. Tabrizi, Heliyon, 5, e01977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. K. H. Or, A. Putra, and M. Z. Selamat, Applied Acoustics, 119, 9 (2017).

    Article  Google Scholar 

  11. E. S. Jang and C. W. Kang, Holzforschung, 75, 1115 (2021).

    Article  CAS  Google Scholar 

  12. L. Cao, Y. Si, Y. Wu, X. Wang, J. Yu, and B. Ding, Nanoscale, 11, 2289 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. E. Taban, A. Khavanin, A. Ohadi, A. Putra, A. J. Jafari, M. Faridan, and A. Soleimanian, Build. Environ., 161, 106274 (2019).

    Article  Google Scholar 

  14. C. J. Chen, G. C. Chen, G. X. Sun, J. Y. Wang, and G. H. Wang, J. Eng. Fiber. Fabrics, 11, 88 (2016).

    CAS  Google Scholar 

  15. C. J. Chen, Z. Wang, Y. Zhang, M. Bi, K. W. Nie, and G. H. Wang, Sci. Rep., 8, 13419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. C. J. Chen, Y. Zhang, G. X. Sun, J. Y. Wang, and G. H. Wang, Bioresour, 11, 4212 (2016).

    CAS  Google Scholar 

  17. C. J. Chen, G. C. Chen, Z. Wang, Y. Zhang, and G. H. Wang, J. Text. Inst., 109, 983 (2017).

    Article  Google Scholar 

  18. T. S. D. Rosa, R. Trianoski, F. Michaud, C. Belloncle, and Iwakiri, J. Nat. Fiber., 19, 185 (2022).

    Article  Google Scholar 

  19. M. Delany and E. Bazley, Applied Acoustics, 3, 105 (1970).

    Article  Google Scholar 

  20. Y. Miki, J. Ceram. Soc. Jpn. (E), 11, 19 (1990).

    Google Scholar 

  21. M. Aliabadi, R. Bayat, R. Golmohammadi, M. Farhadian, and S. M. E. Taghavi, Acoustics Australia, 45, 471 (2017).

    Article  Google Scholar 

  22. T. Komatsu, Acoust. Sci. Technol., 29, 121 (2008).

    Article  Google Scholar 

  23. X. Tang and X. Yan, Compos. Part A-Appl. S., 101, 360 (2017).

    Article  CAS  Google Scholar 

  24. H. Liu and B. Q. Zuo, Appl. Sci.-Basel, 8, 296 (2018).

    Article  Google Scholar 

  25. M. Jonoobi, J. Harun, A. P. Mathew, M. Z. B. Hussein, and K. Oksman, Cellulose, 17, 299 (2010).

    Article  CAS  Google Scholar 

  26. W. A. Steele, “Adsorption Surface Area and Porosity”, Academic Press, New York, 1983.

    Book  Google Scholar 

  27. T. C. Maloney and H. Paulapuro, J. Pulp Paper Sci., 25, 432 (1999).

    Google Scholar 

  28. J. C. Zhang, Y. Shen, B. Jiang, and L. Yan, Aerospace, 5, 30075 (2018).

    Google Scholar 

  29. R.-R. Ou, C.-H. Huang, C.-W. Lou, and J.-H. Lin, Fiber. Polym., 22, 587 (2021).

    Article  CAS  Google Scholar 

  30. N. A. Ramlee, M. Jawaid, A. S. Ismail, E. S. Zainudin, and S. A. K. Yamani, Fiber. Polym., 22, 2563 (2021).

    Article  CAS  Google Scholar 

  31. V. Thirumurugan and M. RameshKumar, Fiber. Polym., 21, 3009 (2020).

    Article  CAS  Google Scholar 

  32. N. Nugroho, Forests, 12, 1285 (2021).

    Article  Google Scholar 

  33. H.-F. Xiang, D. Wang, H.-C. Liu, N. Zhao, and J. Xu, Chinese J. Polym. Sci., 31, 521 (2013).

    Article  CAS  Google Scholar 

  34. M. H. Fouladi, M. Ayub, and M. Nor, Appl. Acoust., 72, 35 (2011).

    Article  Google Scholar 

  35. E. Taban, S. Amininasab, P. Soltani, U. Berardi, D. D. Abdi, and S. E. Samaei, J. Build. Eng., 41, 102752 (2021).

    Article  Google Scholar 

  36. U. Berardi and G. Iannace, Build. Environ., 94, 840 (2015).

    Article  Google Scholar 

  37. U. Berardi and G. Iannace, Appl. Acoust., 115, 131 (2017).

    Article  Google Scholar 

  38. F. F. dos Santos Siqueira, R. L. Cosse, F. A. de Noronha Castro Pinto, P. H. Mareze, C. Frederico e Silva, and L. C. Cunha Nunes, Buildings, 11, 7 (2021).

    Google Scholar 

  39. C. J. Chen, M. Bi, J. Tang, B. X. Zhao, Z. Wang, and G. H. Wang, Mater. Res. Exp., 6, 9 (2019).

    Google Scholar 

  40. A. K. Elwaleed, N. Nikabdullah, M. J. M. Nor, M. F. M. Tahir, and R. Zulkifli, “International Conference on Manufacturing, Optimization, Industrial and Material Engineering, Bandung, Indonesia, 2013.

  41. U. Berardi and G. Iannace, Build. Environ., 94, 840 (2015).

    Article  Google Scholar 

  42. C. Y. Zhao, P. Wang, L. Wang, and D. Liu, Adv. Mater. Sci. Eng., 2014, 206549 (2014).

    Google Scholar 

  43. Z. X. Sun, Z. G. Shen, S. L. Ma, and X. J. Zhang, J. Mater. Eng. Perform., 22, 3140 (2013).

    Article  CAS  Google Scholar 

  44. W. Yang and Y. Li, Science China-Technological Sciences, 55, 2278 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Fundamental Research Funds for the Central Universities (2232020D-16) and Funding for the Young Teachers’ Scientific Research (101-20-000101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhou Wang.

Additional information

Conflict of Interest

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liu, Y., Wang, Z. et al. Windmill Palm Waste Fiber Used as a Sustainable Nonwoven Mat with Acoustic Properties. Fibers Polym 23, 2960–2969 (2022). https://doi.org/10.1007/s12221-022-4346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4346-2

Keywords

Navigation