Skip to main content
Log in

Cerebellar Contributions to Verbal Working Memory

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

There is increasing evidence for a cerebellar role in working memory. Clinical research has shown that working memory impairments after cerebellar damage and neuroimaging studies have revealed task-specific activation in the cerebellum during working memory processing. A lateralisation of cerebellar function within working memory has been proposed with the right hemisphere making the greater contribution to verbal processing and the left hemisphere for visuospatial tasks. We used continuous theta burst stimulation (cTBS) to examine whether differences in post-stimulation performance could be observed based on the cerebellar hemisphere stimulated and the type of data presented. We observed that participants were significantly less accurate on a verbal version of a Sternberg task after stimulation to the right cerebellar hemisphere when compared to left hemisphere stimulation. Performance on a visual Sternberg task was unaffected by stimulation of either hemisphere. We discuss our results in the context of prior studies that have used cerebellar stimulation to investigate working memory and highlight the cerebellar role in phonological encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O'Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning : a critical review. J Clin Exp Neuropsychol. 2011;34(1):35–56.

    PubMed  Google Scholar 

  2. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  PubMed  Google Scholar 

  3. Stoodley CJ. The Cerebellum and Cognition: Evidence from Functional Imaging Studies. Cerebellum. 2011.

  4. Bloedel JR. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav Brain Sci. 1992;15(4):666–78.

    Google Scholar 

  5. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.

    Article  CAS  PubMed  Google Scholar 

  6. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  7. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76.

    Article  PubMed  Google Scholar 

  8. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.

    Article  PubMed  Google Scholar 

  9. Holmes G. The cerebellum of man. Brain. 1939;62(1):1–30.

    Google Scholar 

  10. Luciani L. Il cervelletto: nuovi studi di fisiologia normale e patologica. Le Monnier: Firenze; 1891.

    Google Scholar 

  11. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  CAS  PubMed  Google Scholar 

  12. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.

    Article  CAS  PubMed  Google Scholar 

  14. Wada JA, Clarke R, Hamm A. Cerebral hemispheric asymmetry in humans: cortical speech zones in 100 adult and 100 infant brains. Arch Neurol. 1975;32(4):239.

    Article  CAS  PubMed  Google Scholar 

  15. Jonides J, Smith E, Koeppe R, Awh E. Spatial working-memory in humans as revealed by PET. Nature. 1993;363:623–5.

    Article  CAS  PubMed  Google Scholar 

  16. Jansen A, Flöel A, Van Randenborgh J, Konrad C, Rotte M, Förster A-F, et al. Crossed cerebro-cerebellar language dominance. Hum Brain Mapp. 2005;24(3):165–72.

    Article  PubMed  Google Scholar 

  17. Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.

    Article  CAS  PubMed  Google Scholar 

  18. Baddeley A. Working memory. Science. 1992;255(5044):556–9.

    Article  CAS  PubMed  Google Scholar 

  19. Baddeley A, Hitch GJL. Working memory. In: Bower GA, editor. Psychol. Learn. Motiv. New York: Academic Press; 1974. p. 47–89.

    Google Scholar 

  20. Jonides J, Lewis RL, Nee DE, Lustig CA, Berman MG, Moore KS. The mind and brain of short-term memory. Annu Rev Psychol. 2008;59:193–224.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain. 1998;87:2175.

    Article  Google Scholar 

  22. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(2):306–20.

    Article  PubMed  Google Scholar 

  23. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  24. Peterburs J, Bellebaum C, Koch B, Schwarz M, Daum I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum. 2010;9(3):375–83.

    Article  PubMed  Google Scholar 

  25. Greve KW, Stanford MS, Sutton C, Foundas AL. Cerebellar infarct : a case report. Neuropsychology. 1999;14(5):455–69.

    CAS  Google Scholar 

  26. Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex, Elsevier Srl. 2010;46(7):869–79.

    Article  Google Scholar 

  27. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, Elsevier Inc. 2009;44(2):489–501.

    Article  Google Scholar 

  29. E K-H, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2012;5:000.

    Google Scholar 

  30. Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.

    Article  PubMed  Google Scholar 

  31. Cheeran B, Koch G, Stagg CJ, Baig F, Teo J. Transcranial magnetic stimulation: from neurophysiology to pharmacology, molecular biology and genomics. Neuroscientist. 2010;16(3):210–21.

    Article  CAS  PubMed  Google Scholar 

  32. Lorenzo F Di, Martorana A, Ponzo V, Bonnì S, Angelo ED, Caltagirone C, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients. Front. Aging Neurosci. 2013;5(2).

  33. Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol Int Fed Clin Neurophysiol. 2008;119(11):2559–69.

    Article  Google Scholar 

  34. Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev. 2013;37(5):766–89.

    Article  PubMed  Google Scholar 

  35. Grimaldi G, Argyropoulos GP, Boehringer a, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive Cerebellar Stimulation-a Consensus Paper. Cerebellum. 2013.

  36. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.

    Article  CAS  PubMed  Google Scholar 

  37. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul,Elsevier Ltd. 2013;6(4):649–53.

    Article  Google Scholar 

  38. Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60.

    Article  PubMed  Google Scholar 

  39. Rami L, Gironell A, Kulisevsky J, Garcı́a-Sánchez C, Berthier M, Estévez-González A. Effects of repetitive transcranial magnetic stimulation on memory subtypes: a controlled study. Neuropsychologia. 2003;41(14):1877–83.

    Article  CAS  PubMed  Google Scholar 

  40. Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.

    Article  CAS  PubMed  Google Scholar 

  41. Arasanz CP, Staines WR, Roy EA, Schweizer TA. The cerebellum and its role in word generation: a cTBS study. Cortex Elsevier Srl. 2012;48(6):718–24.

    Article  Google Scholar 

  42. Argyropoulos GP. Cerebellar theta-burst stimulation selectively enhances lexical associative priming. Cerebellum. 2011;10(3):540–50.

    Article  PubMed  Google Scholar 

  43. Argyropoulos GP, Kimiskidis VK, Papagiannopoulos S. Θ-Burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behav Neurosci. 2011;125(5):724–34.

    Article  PubMed  Google Scholar 

  44. Bijsterbosch JD, Lee K-H, Hunter MD, Tsoi DT, Lankappa S, Wilkinson ID, et al. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS. J Cogn Neurosci. 2011;23(5):1100–12.

    Article  PubMed  Google Scholar 

  45. Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eye-blink classical conditioning. J Physiol. 2011;4:887–97.

    Google Scholar 

  46. Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front. Psychol. 2010; 171.

  47. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  48. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  49. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol International Federation of Clinical Neurophysiology. 2009;120(12):2008–39.

    Article  Google Scholar 

  50. Oldfield R. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  CAS  PubMed  Google Scholar 

  51. Sternberg S. High-speed scanning in human memory. Science. 1966;153(736):652–4.

    Article  CAS  PubMed  Google Scholar 

  52. Coltheart M. The MRC psycholinguistic database. Q J Exp Psychol. 1981;33A:497–505.

    Article  Google Scholar 

  53. Arnoult MD, Attneave F. The quantitative study of shape and pattern perception. Psychol Bull. 1956;53(6):452–71.

    Article  CAS  PubMed  Google Scholar 

  54. Collin CA, McMullen PA. Using Matlab to generate families of similar Attneave shapes. Behav Res Methods Instrum Comput. 2002;34(1):55–68.

    Article  PubMed  Google Scholar 

  55. Walsh V, Pascual-Leone A. Transcranial magnetic stimulation: a neurochronometrics of mind. Cambridge: MIT Press; 2003.

    Google Scholar 

  56. Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10:433–6.

    Article  CAS  PubMed  Google Scholar 

  57. Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  58. Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11.

    Article  PubMed  Google Scholar 

  59. Picazio S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Cerebellar Contribution to Mental Rotation: a cTBS Study. Cerebellum. 2013.

  60. Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage. 2005;24(2):462–72.

    Article  PubMed  Google Scholar 

  61. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  62. Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50. discussion 453–4.

    Article  CAS  PubMed  Google Scholar 

  63. Barker AT. The history and basic principles of magnetic nerves stimulation. In: Pascual-Leone A, Davey NJ, Rothwell JC, Wassermann EM, Puri BK, editors. Handb. Transcranial Magn. Stimul. London: Oxford University Press; 2002. p. 3–17.

    Google Scholar 

  64. Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar Theta Burst Stimulation Impairs Eye-Blink Classical Conditioning. J. Physiol. 2011

  65. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78(3–5):272–303.

    Article  PubMed  Google Scholar 

  66. Wildgruber D, Ackermann H, Grodd W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage. 2001;13(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  67. Baddeley AD. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.

    Article  PubMed  Google Scholar 

  68. Thielscher A, Kammer T. Electric field properties of two commercial figure 8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol. 2004;115(7):1697–708.

    Article  PubMed  Google Scholar 

  69. Hautzel H, Mottaghy FM, Specht K, Müller H-W, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage Elsevier Inc. 2009;47(4):2073–82.

    Article  Google Scholar 

Download references

Conflict of interest

All authors declare that they have no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomlinson, S.P., Davis, N.J., Morgan, H.M. et al. Cerebellar Contributions to Verbal Working Memory. Cerebellum 13, 354–361 (2014). https://doi.org/10.1007/s12311-013-0542-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0542-3

Keywords

Navigation