Skip to main content
Log in

Identification of a karst system’s intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

For water management purposes, information about an entire aquifer system is generally more important than information about a specific spring. Since a karstic aquifer system might drain to several outlets, conclusions derived from a single spring can be misleading for characterization and modeling. In this study we apply a conceptual model to an Alpine dolomite karst system in Austria. The particular challenge was that several small springs with strongly varying hydrological behavior and diffuse flow into surrounding streams drain this system. Instead of applying the model to a single spring, it was calibrated simultaneously to several observations within the system aiming to identify the karst system’s intrinsic hydrodynamic parameters. Parameter identification is supported by modeling the transport of water isotopes (δ18O). The parameters were transferred to the whole system with a simple upscaling procedure and a sensitivity analysis was performed to unfold influence of isotopic information on parameter sensitivity and simulation uncertainty. The results show that it is possible to identify system intrinsic parameters. But the sensitivity analysis revealed that some are hardly identifiable. Only by considering uncertainty reasonable predictions can be provided for the whole system. Including isotopic information increases the sensitivity of some intrinsic parameters, but it goes along with a sensitivity decrease for others. However, a possible reduction of prediction uncertainty by isotopic information is compensated by deficiencies in the transport modeling routines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbo H, Shavit U, Markel D, Rimmer A (2003) A numerical study on the influence of fractured regions on lake/groundwater interaction; the Lake Kinneret (Sea of Galilee) case. J Hydrol 283(1–4):225–243

    Article  Google Scholar 

  • Andreo B, Carrasco F, Durán JJ, LaMoreaux JW, Mudarra M, Andreo B, Mudry J (2010) Hydrochemical heterogeneity in the discharge zone of a karstic aquifer. In: LaMoreaux JW (ed) Advances in research in karst media. Environmental earth sciences. Springer, Berlin, pp 163–168. doi:10.1007/978-3-642-12486-0_25

    Chapter  Google Scholar 

  • Aquilina L, Ladouche B, Doerfliger N (2006) Water storage and transfer in the epikarst of karstic systems during high flow periods. J Hydrol 327:472–485

    Article  Google Scholar 

  • Austrian Network of Isotopes in Precipitation ANIP (2010) Database in cooperation with the Ministry of Environment, Austrian Federal States, Environmental Agency, Vienna

  • Beven KJ (2003) Rainfall-runoff modelling: the primer. Wiley, Chichester

    Google Scholar 

  • Birk S, Liedl R, Sauter M (2006) Karst spring responses examined by process-based modeling. Groundwater 44(6):832–836

    Article  Google Scholar 

  • Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers/Les hydrogrammes des sources karstiques en tant qu’indicateurs des aquifères karstiques. J Hydrol Sci 38(1):51–62

    Article  Google Scholar 

  • Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res 44 (W03408). doi:10.1029/2007WR006277

  • Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. CRC Press Inc, Boca Raton

    Google Scholar 

  • Dershowitz WS, La Pointe PR, Doe TW (2004) Advances in discrete fracture network modelling. In: Proceedings of the US EPA/NGWA Fractured Rock Conference, Portland

  • Doctor DH, Alexander ECJ, Petric M, Kogovsek J, Urbanc J, Lojen S, Stichler W (2006) Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeol J 14:1171–1191

    Google Scholar 

  • Doerfliger N, Fleury P, Ladouche B (2008) Inverse modeling approach to allogenic karst system characterization. Ground Water:1–13. doi:10.1111/j.1745-6584.2008.00517.x

  • Duan QY, Sorooshian S, Gupta HV (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  • Duan QY, Gupta HV, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521

    Article  Google Scholar 

  • Duan QY, Sorooshian S, Gupta HV (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284

    Article  Google Scholar 

  • Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345:38–49

    Article  Google Scholar 

  • Fleury P, Ladouche B, Conroux Y, Jourde H, Doerfliger N (2009) Modelling the hydrologic functions of a karst aquifer under active water management—the Lez spring. J Hydrol 365:235–243

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Freer J, Beven KJ, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32:2161–2173

    Article  Google Scholar 

  • Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348:452–463

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor Francis & Group, London

    Google Scholar 

  • Grasso DA, Jeannin P-Y (1994) Etude critique des methods d’analyse de la réponse globale des systèmes karstiques. Application au site du Bure (JU, Suisse). Bulletin d’Hydrogéologie 13:87–113

    Google Scholar 

  • Hornberger GM, Spear RC (1981) An approach to the preliminary analysis of environmental systems. J Environ Manag 12:7–12

    Google Scholar 

  • Hu C, Hao Y, Yeh T-CJ, Pang B, Wu Z (2008) Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrol Process 22:596–604

    Article  Google Scholar 

  • Humer F, Kralik M (2008) Integrated Monitoring Zöbelboden: Hydrologische und hydrochemische Untersuchungen. Unpubl Rep Environment Agency, Vienna:34

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006, World Soil Resources Report 103, FAO, Rome

  • Jost G, Dirnböck T, Grabner M-T, Mirtl M (2010) Nitrogen leaching of two forest ecosystems in a karst watershed. Water Air Soil Pollut:1–17. doi:10.1007/s11270-010-0674-8

  • Jukic D, Denic-Jukic V (2006) Nonlinear kernel functions for karst aquifers. J Hydrol 328:360–374

    Article  Google Scholar 

  • Jukic D, Denic-Jukic V (2009) Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. J Hydrol 373(3–4):302–315

    Article  Google Scholar 

  • Kinzelbach W (1986) Groundwater modelling. Int. Edition. Elsevier, Amsterdam

    Google Scholar 

  • Kiraly L (1998) Modelling karst aquifers by the combined discrete channel and continuum approach. Bulletin d’Hydrogéologie 16:77–98

    Google Scholar 

  • Kiraly L (2003) Karstification and Groundwater Flow. Speleogenesis Evol Karst Aquifers 1(3):1–24

    Google Scholar 

  • Kralik M, Keimel T (2003) Time-input, an innovative groundwater-vulnerability assessment scheme: application to an alpine test site. Environ Geol 44:373–380

    Article  Google Scholar 

  • Kralik M, Humer F, Papesch W, Tesch R, Suckow A, Han LF, Gröning M (2009) Karstwater-ages in an alpine dolomite catchment, Austria: δ18O, 3H, 3H/3He, CFC and dye tracer investigations. European Geosciences Union, General Assembly, 19–24 April 2009, Vienna 11 (09180)

  • Kurtulus B, Razack M (2006) Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrogeol J 15:241–254

    Article  Google Scholar 

  • Lange J, Arbel Y, Grodek T, Greenbaum N (2010) Water percolation process studies in a Mediterranean karst area. Hydrol Process 24(13):1866–1879

    Article  Google Scholar 

  • Le Moine N, Andréassian V, Perrin C, Michel C (2007) How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resour Res 43 (W06428). doi:10.1029/2006WR005608

  • Le Moine N, Andréassian V, Mathevet T (2008) Confronting surface- and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France). Water Resour Res 44 (W03403). doi:10.1029/2007WR005984

  • Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol 179

  • Mahler BJ, Garner BD (2009) Using nitrate to quantify quick flow in a karst aquifer. Ground Water 47(3):350–360

    Article  Google Scholar 

  • Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67(1–4):25–43

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Parajka J, Merz R, Blöschl G (2007) Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrol Process 21(4):435–446. doi:10.1002/hyp.6253

    Article  Google Scholar 

  • Pinault J-L, Plagnes V, Aquilina L, Bakalowicz M (2001) Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: characterization of karst system functioning. Water Resour Res 37(8):2191–2204

    Article  Google Scholar 

  • Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW–2005. Ground Water 43(3):321–325

    Article  Google Scholar 

  • Rimmer A, Salingar Y (2006) Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources, Israel. J Hydrol 331:524–542

    Article  Google Scholar 

  • Seibert J, McDonnell JJ (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resour Res 38(11):1241. doi:10.1029/2001WR000978

    Article  Google Scholar 

  • Spear RC, Hornberger GM (1980) Eutriphication in peel inlet-II. Identification of critical uncertainties via generalized sensitivity analysis. Water Resour Res 14:43–49

    Google Scholar 

  • Tritz S, Guinot V, Jourde H (2011) Modelling the behaviour of a karst system catchment using non linear hysteretic conceptual model. J Hydrol (in press, accepted manuscript)

  • Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S (2001) A framework for development and application of hydrological models. Hydrol Earth Syst Sci 5(1):13–26

    Article  Google Scholar 

  • Wendling U, Schellin H.-G, Thomä M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung—the supply of daily information on the water budget of the soil as a contribution to the agrometeorological adviso. Zeitschrift für Meteorologie 41:468–475

    Google Scholar 

Download references

Acknowledgments

Thanks to Maria-Theresia Grabner, Thomas Dirnböck, Florian Wenter and Johannes Kobler from the Environment Agency, Austria, for providing their data and valuable advice, to the measurement team, Manuela Nied, Nicole Jackisch, Matthias Ritter, Benjamin Gralher and Julien Farlin, for their brave encouragement in taking samples and measuring runoff during the rainfall-runoff event, to Irene Kohn and Jürgen Strub from the Institute of Hydrology for reviewing the paper and designing the figures and to Juraj Parajka from the Institut für Wasserbau und Ingenieurhydrologie, Technische Universität Wien, for providing information to calibrate the snow routine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hartmann.

Appendix

Appendix

The snow routine uses a day degree factor DDF and a melt temperature T M. In addition, a snow correction factor SCF was defined to attribute for the catch deficit of the precipitation gages. With a threshold temperature interval T RT S a mixture of rain and snow was allowed. Hereby T R is the temperature above which precipitation only occurs in liquid form, while T S is the temperature below which precipitation is exclusively snow. Hence, if the air temperature T A falls below T R, a part of the precipitation is stored a snow. If T A falls below T S , all precipitation is stored as snow until T A exceeds again T M. A detailed description including all equations can be found in Parajka et al. (2007). Table 6 shows the optimized snow storage parameters. The Calibration boundaries were set by prior knowledge provided by Parajka et al. (2007). Sporadic snow water equivalent observations provided by the Federal Environmental Agency, Austria, were used for calibration with the SCE algorithm.

Table 6 Optimized snow storage parameters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, A., Kralik, M., Humer, F. et al. Identification of a karst system’s intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer. Environ Earth Sci 65, 2377–2389 (2012). https://doi.org/10.1007/s12665-011-1033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1033-9

Keywords

Navigation