Skip to main content
Log in

Assessing hyporheic exchange and associated travel times by hydraulic, chemical, and isotopic monitoring at the Steinlach Test Site, Germany

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

First results of a multi-disciplinary hyporheic monitoring study are presented from the newly established Steinlach Test Site in Southern Germany. The site is located in a bend of the River Steinlach (mean discharge of 1.8 m³/s) underlain by an alluvial sandy gravel aquifer connected to the stream. The overall objective is a better understanding of hyporheic exchange processes at the site and their interrelations with microbial community dynamics and biochemical reactions at the stream–groundwater interface. The present paper focuses on the distribution of lateral hyporheic exchange fluxes and their associated travel times at the Steinlach Test Site. Water level dynamics in various piezometers correspond to the different domains of hydraulic conductivity in the shallow aquifer and confirms hyporheic exchange of infiltrated stream water across the test site. Hydrochemical compositions as well as increased damping of continuous time series of electrical conductivity (EC) and temperature at the respective piezometers confirmed the inferred distribution of hyporheic flowpaths. Mean travel times ranging from 0.5 days close to the stream to more than 8 days in the upstream part of the test site could be estimated from deconvolution of EC and δ18O–H2O data. The travel times agree well with the presumed flowpaths. Mg/Ca ratios as well as model fits to the EC and δ18O data indicate the presence of an additional water component in the western part of the test site which most likely consists of hillslope water or groundwater. Based on the mean travel times, the total lateral hyporheic exchange flux at the site was estimated to be of the order of 1–2 L/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anibas C, Fleckenstein JH, Volze N, Buis K, Verhoeven R, Meire P, Batelaan O (2009) Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange. Hydrol Process 23(15):2165–2177

    Article  Google Scholar 

  • Bencala KE (2000) Hyporheic zone hydrological processes. Hydrol Process 14(15):2797–2798

    Article  Google Scholar 

  • Boano F, Camporeale C, Revelli R, Ridolfi L (2006) Sinuosity-driven hyporheic exchange in meandering rivers. Geophys Res Lett 33(18):L18406. doi:10.1029/2006GL027630

    Article  Google Scholar 

  • Boano F, Demaria A, Revelli R, Ridolfi L (2010) Biogeochemical zonation due to intrameander hyporheic flow. Water Resour Res 46(2):W02511. doi:10.1029/2008WR007583

    Article  Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37(1):1–33

    Article  Google Scholar 

  • Cardenas MB (2009) Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour Res 45(6):W06429. doi:10.1029/2008WR007651

    Article  Google Scholar 

  • Cardenas MB, Wilson JL (2007) Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour Res 43(8):W08412. doi:10.1029/2006WR005787

    Google Scholar 

  • Cirpka OA, Fienen MN, Hofer M, Hoehn E, Tessarini A, Kipfer R, Kitanidis PK (2007) Analyzing bank filtration by deconvoluting time series of electric conductivity. Ground Water 45(3):318–328

    Article  Google Scholar 

  • Darling WG, Gooddy DC, Riches J, Wallis I (2010) Using environmental tracers to assess the extent of river-groundwater interaction in a quarried area of the English Chalk. Appl Geochem 25(7):923–932

    Article  Google Scholar 

  • Doro KO, Leven C, Cirpka OA (2013) Delineating subsurface heterogeneity at the Steinlach River Loop near Tübingen, Germany, using geophysical and hydrogeological methods. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2316-0

  • Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33(11):1291–1295

    Article  Google Scholar 

  • Grathwohl P et al (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2281-7

  • Haggerty R, Marti E, Argerich A, von Schiller D, Grimm NB (2009) Resazurin as a “smart” tracer for quantifying metabolically active transient storage in stream ecosystems. J Geophys Res 114:G03014. doi:10.1029/2008JG000942

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29(1):89–98

    Article  Google Scholar 

  • Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water-groundwater interactions using time series analyses of streambed thermal records: method development. Water Resour Res 42(10):W10410. doi:10.1029/2005WR004787

    Article  Google Scholar 

  • Hoehn E, Cirpka OA (2006) Assessing hyporheic zone dynamics in two alluvial flood plains of the Southern Alps using water temperature and tracers. HESS 10:553–563

    Google Scholar 

  • Kasahara T, Hill AR (2007) Lateral hyporheic zone chemistry in an artificially constructed gravel bar and a re-meandered stream channel, Southern Ontario, Canada. J Am Water Resour Assoc 43(5):1257–1269

    Article  Google Scholar 

  • Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series. J Hydrol 336:1–16

    Article  Google Scholar 

  • Lamontagne S, Cook PG (2007) Estimation of hyporheic water residence time in situ using Rn-222 disequilibrium. Limnol Oceanogr Methods 5(407):407–416

    Article  Google Scholar 

  • Lemke D, Liao Z, Cirpka OA (2012) Ermittlung von hyporheischen Austauschflüssen und deren Verweilzeiten mit Hilfe von reaktiven und konservativen Tracern. In: Proceedings Tag der Hydrologie (in press)

  • Liao Z, Cirpka OA (2011) Shape-free inference of hyporheic travel-time distributions from conservative and reactive tracer tests in streams. Water Resour Res 47(7):W07510. doi:10.1029/2010WR009927

  • Maloszewski, P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrogeology, IAEA TECDOC 910. IAEA, Vienna, pp 9–50

  • Marion A, Packman AI, Zaramella M, Bottacin-Busolin A (2008) Hyporheic flows in stratified beds. Water Resour Res 44(9):W09433. doi:10.1029/2007WR006079

    Article  Google Scholar 

  • Massmann G, Sültenfuß J, Dünnbier U, Knappe A, Taute T, Pekdeger A (2008) Investigation of groundwater residence times during bank filtration in Berlin: a multi-tracer approach. Hydrol Process 22(6):788–801

    Article  Google Scholar 

  • Mutz M, Kalbus E, Meinecke S (2007) Effect of instream wood on vertical water flux in low-energy sand bed flume experiments. Water Resour Res 43(10):W10424. doi:10.1029/2006WR005676

    Article  Google Scholar 

  • Osenbrück K, Gläser HR, Knöller K, Weise SM, Möder M, Wennrich R, Schirmer M, Reinstorf F, Busch W, Strauch G (2007) Sources and transport of selected organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water Res 41(15):3259–3270

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2). USGS water-resources investigations report 99-4259, USGS, Denver, Colorado, USA

  • Pinay G, O’Keefe TC, Edwards RT, Naiman RJ (2009) Nitrate removal in the hyporheic zone of a salmon river in Alaska. River Res Appl 25(4):367–375

    Article  Google Scholar 

  • Robertson AL, Wood PJ (2010) Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundam Appl Limnol 176(4):279–289

    Article  Google Scholar 

  • Salehin M, Packman AI, Paradis M (2004) Hyporheic exchange with heterogeneous streambeds: modeling and laboratory experiments. Water Resour Res 40(11):W11504. doi:10.1029/2003WR002567

    Article  Google Scholar 

  • Sawyer AH, Cardenas MB (2009) Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment. Water Resour Res 45(8):W08406. doi:10.1029/2008WR007632

    Article  Google Scholar 

  • Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. HESS 10:849–859

    Google Scholar 

  • Schwientek M, Osenbrück K, Fleischer M (2013) Investigating hydrological drivers of nitrate export dynamics in two agricultural catchments in Germany using high-frequency data series. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2322-2

  • Smith JWN, Surridge BWJ, Haxton TH, Lerner DN (2009) Pollutant attenuation at the groundwater-surface water interface: a classification scheme and statistical analysis using national-scale nitrate data. J Hydrol 369:392–402

    Article  Google Scholar 

  • Stonedahl SH, Harvey JW, Wörman A, Salehin M, Packman A (2010) A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour Res 46(12):W12539. doi:10.1029/2009WR008865

    Article  Google Scholar 

  • Thibodeaux L, Boyle J (1987) Bedform-generated convective transport in bottom sediment. Nature 325:341–343

    Article  Google Scholar 

  • Van der Hoven SJ, Fromm NJ, Peterson EW (2008) Quantifying nitrogen cycling beneath a meander of a low gradient, N-impacted, agricultural stream using tracers and numerical modelling. Hydrol Process 22(8):1206–1215

    Article  Google Scholar 

  • Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by fiber-optic high-resolution vertical temperature profiling. J Hydrol 380:154–164

    Article  Google Scholar 

  • Wondzell SM (2006) Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrol Process 20(2):267–287

    Article  Google Scholar 

Download references

Acknowledgements

Our special thanks are addressed to the staff of the Hydrochemistry and the Isotope Geochemistry lab for their analytical support. This work was supported by a grant from the Ministry of Science, Research and Arts of Baden-Württemberg (AZ Zu 33-721.3-2) and the Helmholtz Centre for Environmental Research, Leipzig (UFZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Osenbrück.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osenbrück, K., Wöhling, T., Lemke, D. et al. Assessing hyporheic exchange and associated travel times by hydraulic, chemical, and isotopic monitoring at the Steinlach Test Site, Germany. Environ Earth Sci 69, 359–372 (2013). https://doi.org/10.1007/s12665-012-2155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2155-4

Keywords

Navigation