Skip to main content
Log in

Groundwater flow model of the Pipiripau watershed, Federal District of Brazil

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In order to understand the groundwater dynamics and to improve the management of water resources in the Federal District of Brazil, this research proposes a 3D groundwater flow model to represent the groundwater level and flow system. The selected test site was the Pipiripau catchment. The development of the model was based on available geological, hydrogeological, geomorphological, climatological and pedological data. Geological and hydrogeological data were used to generate the 3D groundwater flow model. The 3D mesh elements of the domain were generated through the Groundwater Modeling System software, based on the logs of the well materials. The numerical simulation of the finite element method was implemented in the framework of the scientific software OpenGeoSys. With the 3D mesh-appropriated boundary conditions, annual average infiltration data and hydrogeological parameters were incorporated. Afterwards, the steady-state model was calibrated by the PEST software using available data of the water level from wells. The results showed the distribution of the steady-state hydraulic heads in the model domain, where the highest values occurred in the east and west recharge areas and the lowest values were found in the southwest of the basin. The results of this study can be a used as initial condition for the transient groundwater flow simulation and to provide a scientific basis for water resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Albuquerque RW (2009) Levantamento de malha fundiária e diagnóstico ambiental das propriedades da bacia do Pipiripau (DF/GO) para a participação no Programa Produtor de Água. Dissertation, University of Brasília

  • Almeida L, Resende L, Rodrigues A, Campos JEG (2006) Hidrogeologia do Estado de Goiás (Hydrogeology of the Goiás State). Superintendência de Geologia Mineração (Superintendency of Mining Geology). Goiás, Brazil. Technical report, p 230

  • ANA—National Agency of Waters (2004) Estudos de disponibilidade de água para a Bacia do Pipiripau (Availability Studies of Water for the Pipiripau Basin). http://www.ana.gov.br. Accessed 7 June 2010

  • ANA—National Agency of Waters (2010) Relatório de Diagnóstico Socioambiental da Bacia do Ribeirão Pipiripau (Environmental Report of Pipiripau basin). http://www.ana.gov.br. Accessed 04 May 2011

  • Arnold JG, Srinivasan R, Muttiah RS (1998) Large-scale hydrologic modeling and assessment—part I: model development. JAWRA 34(1):73–89

    Google Scholar 

  • Aster RC, Borchers B, Thurber CH (2005) Parameter estimation and inverse problems. Elsevier, Amsterdam, p 301

    Google Scholar 

  • CAESB—Environmental Sanitation Company of the Federal District (2001) Plano de Proteção Ambiental do Ribeirão Pipiripau (Environmental Report of Pipiripau basin). www.caesb.df.gov.br. Accessed 26 April 2010

  • Camelo APS (2011) Quantificação e valorização do serviço ambiental hidrológico resultante da recomposição de passivos ambientais na bacia hidrográfica do Ribeirão Pipiripau. Dissertation, University of Brasília

  • Campos JEG (2011) Tecnical report of the physical and biotic media. In: ZEE—Zoneamento Ecológico Econômico do Distrito Federal. Chapter III, 172pp

  • Campos JEG, Freitas-Silva FH (1998) Hidrogeologia do Distrito Federal. In: Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal, Brasília, IEMA/SEMATEC/UnB, pp 1–84, (vol. IV, technical report)

  • Campos JEG, Tröger U (2000) Groundwater occurrence in hard rocks in the Federal District of Brasilia a sustainable supply? In: Sililo, groundwater: past achievements and future challenges, Proceedings of XXX I.A.H. congress. Cape Town, South Africa, Balkema, pp 109–113

  • Carmelo AC (2002) Caracterização de aquíferos fraturados por integração de informações geológicas e geofísicas. Dissertation, University of Brasília, 179pp

  • Coimbra ARSR (1987) Balanço hídrico preliminar do Distrito Federal. In: Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal, Brasília, IEMA/SEMATEC/UnB, pp 50–78. (vol. II, technical report)

  • Delfs J-O, Park C-H, Kolditz O (2009) A sensitivity analysis of Hortonian flow. Adv Water Resour 32(9):1386–1395. doi:10.1016/j.advwatres.2009.06.005

    Article  Google Scholar 

  • Diersch HJG, Perrochet P (2010) FEFLOW 6.0—white papers, vol 1. DHI—WASY, Berlin

  • Doherty J (1998) PEST—model-independent parameter estimation, 2nd edn. Watermark Numerical Computing, Corinda

    Google Scholar 

  • Doherty J (2000) PEST—model-independent parameter estimation, 3rd edn. Watermark Numerical Computing, Corinda

    Google Scholar 

  • Doherty J (2010) PEST: model-independent parameter estimation, 4th edn. Watermark Numerical Computing, Corinda

    Google Scholar 

  • EMBRAPA—Brazilian Company of Agricultural Research (1978) Mapa de solos do Distrito Federal (1:100.000). EMBRAPA-EPI, Brasília

  • Faria A (1995) Estratigrafia e sistemas deposicionais do Grupo Paranoá nas áreas de Cristalina, Distrito Federal e São João D’Aliança—Alto Paraíso de Goiás. Dissertation, University of Brasília, 199pp

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Am Geophys Union Eos 81:583–585. http://www.jpl.nasa.gov/srtm/. Accessed 10 June 2009

  • Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Fiori JPO, Campos JEG, Almeida L (2010) Variabilidade da condutividade hidráulica das principais classes de solos do Estado de Goiás (Variability of hydraulic conductivity of the main soil classes in the Goiás state). Geosci J 29(2):229–235

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Inc, Englewood Cliffs, p 604

    Google Scholar 

  • Geuzaine C, Remacle JF (2009) GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331

    Article  Google Scholar 

  • Gräbe A, Rink K, Fischer T, Sun F, Wang W, Rödiger T, Siebert C, Kolditz O (2012) Numerical analysis of the groundwater regime in the Western Dead Sea Escarpment. Environ Earth Sci 69(2). doi:10.1007/s12665-012-1795-8

  • Gonçalves TD, Lohe C, Campos JEG (Submitted—a—Geoderma—manuscript number GEODER7596) Porous aquifers of the Federal District, Brazil: characterization of hydraulic conditions

  • Gonçalves TD, Lohe C, Campos JEG (Submitted—b—Hydrological Processes—manuscript number HYP-12-0404) Application of different pumping tests methods to fractured aquifers: case study in the Federal District, Brazil

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: User guide to modularization concepts and the Ground-Water Flow Process. USGS Open-File Report 00-92. Reston. US Geological Survey, Virginia

  • IBGE. Brazilian Institute of Geography and Statistics (2012) Atlas do Censo Demográfico 2010. http://www.ibge.gov.br/home/estatistica/populacao/censo2010. Accessed 21 June 2009

  • INMET—National Institute of Meteorology (2009) Automatic stations. Available at http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_estacoes_auto

  • Kalbacher T, Mettier R, Mcdermott C, Wang W, Kosakowski G, Taniguchi T, Kolditz O (2007) Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory. Comput Geosci 11:9–26

    Article  Google Scholar 

  • Kalbacher T, Delfs JO, Shao H, Wang W, Walther M, Samaniego L, Schneider C, Musolff A, Centler F, Sun F, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2012) The IWAS-ToolBox: software coupling for an integrated water resources management, environ. Earth Sci 65(5):1367–1380. doi:10.1007/s12665-011-1270-y

    Article  Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu N, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environ. Earth Sci 67(2):589–599. doi:10.1007/s12665-012-1546-x

    Article  Google Scholar 

  • Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal ones of the earth according to the duration of hot, moderate and cold periods and to the impact of eat on the organic world). Meteorol Z 1:215–226. (Translated and edited by Volken E and Brönnimann S—Meteorol Z 20 (2011): 351–360)

  • Lousada EO, Campos JEG (2005) Proposta de modelos hidrogeológicos conceituais aplicados aos aquíferos da região do Distrito Federal. Revista Brasileira de Geociências 35(3):407–414

    Google Scholar 

  • Owen SJ, Jones NL, Holland JP (1996) A comprehensive modeling environment for the simulation of groundwater flow and transport. Eng Comput 12(3–4):235–242

    Article  Google Scholar 

  • Poeter EP, Hill MC (1997) Inverse models: a necessary next step in ground-water modeling. Ground Water 35(2):250–260

    Article  Google Scholar 

  • Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi:10.1007/s12665-011-1230-6

    Article  Google Scholar 

  • Rink K, Fischer T, Selle B, Kolditz O (2012) A data exploration framework for validation and setup of hydrological models. Environ Earth Sci 69(2). doi:10.1007/s12665-012-2030-3

  • Souza MT (2001) Fundamentos para Gestão dos Recursos Hídricos Subterrâneos do Distrito Federal - Basics for Management of Groundwater Resources in the Federal District. Dissertation, University of Brasília, Brasília, p 94

  • Strauch M, Bernhofer C, Koide S, Volk M, Lorz C, Makeschin F (2012) Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J Hydrol 414(15):413–424. doi:10.1016/j.jhydrol.2011.11.014

    Article  Google Scholar 

  • Sun F, Shao H, Kalbacher T, Wang W, Yang Z, Huang Z, Jiang T, Kolditz O (2011) Groundwater drawdown at Nankou site of Beijing Plain: model development and calibration. Environ Earth Sci 64(5):1323–1333. doi:10.1007/s12665-011-0957-4

    Article  Google Scholar 

  • Therrien R, McLaren RG, Sudicky EA (2007) HydroGeoSphere: a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport (Draft ed.). Groundwater Simulations Group, University of Waterloo

    Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance: Centerton, vol 8, no. 1. Laboratory of Climatology, Publications in Climatology, New Jersey, 104p

  • Toll M, Wu Y, Wang W, Kolditz O, Sauter M (2009) Groundwater resource in Western Jordan: a hydrogeological investigation of the influence of complex geological features on groundwater flow paths and storage. In: European Water Resources Association’s (EWRA) 7th International Conference. Limassol, Cyprus, 25–27 June 2009

  • Trefry MG, Muffels C (2007) FEFLOW: a finite-element ground water flow and transport modeling tool. Ground Water 45(5):525–528

    Article  Google Scholar 

  • Valeriano MM (2004) Modelo digital de elevação com dados SRTM disponíveis para a América do Sul. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 72 pp (INPE-10550-RPQ/756)

  • Wu Y, Wang W, Toll M, Alkhoury W, Sauter M, Kolditz O (2010) Development of high-precision groundwater model based on scarce data: the Wadi Kafrein catchment/Jordan. Environ Earth Sci 64(3):771–785. doi:10.1007/s12665-010-0898-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the Scholarship 2009/2010. The authors extend their gratitude to the Federal Ministry for Education and Research (BMBF) in the framework of the project “IWAS—International Water Research Alliance Saxony” (Grant 02WM1027 and 02WM1028) for supporting and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Diniz Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, T.D., Fischer, T., Gräbe, A. et al. Groundwater flow model of the Pipiripau watershed, Federal District of Brazil. Environ Earth Sci 69, 617–631 (2013). https://doi.org/10.1007/s12665-013-2400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2400-5

Keywords

Navigation