Skip to main content

Advertisement

Log in

Technique, analysis routines, and application of direct push-driven in situ color logging

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Color data are a useful proxy for soil/sediment parameterization since they reflect material characteristics. We introduce direct push color logging for real-time and depth-resolved, in situ colorimetric record of colors in unconsolidated sediments in terrestrial environments. Until now, no routines exist on how to handle highly resolved (mm-scale) data. To develop such routine, we transform colorimetric data (CIEXYZ) into color surrogates of selected color spaces (CIExyZ, \({\text{CIE}}L^{*} a^{*} b^{*}\), \({\text{CIE}}L^{*} c^{*} h^{*}\), sRGB). We obtain interpretable color logs over depth by filtering with Haar and Daublet4 wavelet functions. We verify the approach, according to repeatability of in situ sediment color measurements, with related lithological determination gathered by state-of-the-art direct push-based cone penetration testing and soil sampling data. The developed routine is appropriate for unambiguous transformation of color data into interpretable color surrogates and filtering small-scale variability. We observe that soil color logs are repeatable and proved to correlate with lithological/chemical changes. Thus, the technique allows enhanced profiling by means of providing a reproducible high-resolution parameter for analysis of soil/sediment characteristics. This opens potential new areas of application and new outputs for in situ-obtained colorimetric data in and beyond geotechnical site characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Coefficient

\(a^{*}\) :

Green–red ratio

α :

Coefficient

B, b :

Blue color

b :

Coefficient

\(b^{*}\) :

Blue–yellow ratio

BI:

Brightness index

b j :

Horizontal distance

\(c^{*}\) :

Chroma

CI:

Coloration index

CPT:

Cone penetration testing

CLT:

Color logging tool

DP:

Direct push

DPT:

Direct push technologies

DT:

Dual-tube coring

\(\Delta E_{ab}^{*}\) :

Euclidian distance between \(a^{*}\) and \(b^{*}\)

f S :

Sleeve friction

F :

Number of pairs

G, g :

Green color

H :

Layer thickness

\(h^{*}\) :

Hue angle

\(\Delta H_{ab}^{*}\) :

Hue distance between \(a^{*}\) and \(b^{*}\)

HI:

Hue index

H RGB :

Decorrelated hue

I :

Current

I RGB :

Decorrelated intensity

k :

Coefficient

\(L^{*}\) :

Luminosity

λ :

Wave number/length

LIF:

Laser-induced fluorescence

N :

Number of elements

M :

Transformation matrix

φ :

Father wavelet

ϕ λ (λ):

Color stimulus function

ψ :

Mother wavelet

q c :

Measured cone resistance

q t :

Corrected cone resistance

R, r :

Red color

R f :

Friction ratio

R(λ):

Reflectance factor

ρ :

Density

SI:

Saturation index

S RGB :

Decorrelated saturation

S(λ):

Transmission

t :

Time

T CWT :

Continuous wavelet transformation

T DWT :

Discontinuous wavelet transformation

u 2 :

Pore pressure measured at position 2 (behind the cone)

ν:

Transformation matrix (\({\text{rgb}}\))

V :

Transformation matrix (\({\text{RGB}}\))

WT:

Wavelet transformation

x :

Value

X 10; x 10; X; X 0 :

Colorimetric coordinates

\(\overline{x} \left( \lambda \right)\) :

Color matching function

y :

Depth

Y 10; y 10; Y; Y 0 :

Colorimetric coordinates

\(\overline{y} \left( \lambda \right)\) :

Color matching function

Z 10; z 10; Z; Z :

Colorimetric coordinates

\(\overline{z} \left( \lambda \right)\) :

Color matching function

References

  • Ahuja N, Lertrattanapanich S, Bose NK (2005) Properties determining choice of mother wavelet. IEE Proc Vis Image Signal Proces 152:659–664. doi:10.1049/ip-vis:20045034

    Article  Google Scholar 

  • Barrett LR (2002) Spectrophotometric color measurement in situ in well drained sandy soils. Geoderma 108:49–77. doi:10.1016/S0016-7061(02)00121-0

    Article  Google Scholar 

  • Barrón V, Torrent J (1986) Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. J Soil Sci 37(4):499–510. doi:10.1111/j.1365-2389.1986.tb00382.x

    Article  Google Scholar 

  • Barrow JC (1994) The resonant sonic drilling method: an innovative technology for environmental restoration programs. Ground Water Monitor Rem 14:153–160

    Article  Google Scholar 

  • Ben-Dor E, Heller D, Chudnovsky A (2008) A novel method of classifying soil profiles in the field using optical means. Soil Sci Soc Am J 72:1113–1123. doi:10.2136/sssaj2006.0059

    Article  Google Scholar 

  • Blavet D, Mathe E, Leprun JC (2000) Relations between soil colour and waterlogging duration in a representative hillside of the West African granito-gneissic bedrock. Catena 39:187–210. doi:10.1016/s0341-8162(99)00087-9

    Article  Google Scholar 

  • Bredberg AJ, Holzhey CS, Herriman RC, Yee MS (2012) Photographic documentation of soil color change on exposure to air. Soil Horiz 53:31. doi:10.2136/sh12-03-0007

    Article  Google Scholar 

  • Breul P, Gourves R (2006) In field soil characterization: approach based on texture image analysis. J Geotech Geoenviron Eng 132:102–107. doi:10.1061/(asce)1090-0241(2006)132:1(102)

    Article  Google Scholar 

  • Brouwer JJM (2007) In-situ soil testing. Lankelma, East Sussex

    Google Scholar 

  • Bucholtz F, Nau GM, Aggawal ID, Sangera JS, Ewing KJ (1998) Fiber optic infrared cone penetrometer system. US patent 5.739.536, Date issued: 14 April, p 16

  • CIE - Commission Internationale de l’Eclairage (1931) In: Proceedings of the eight session, Paris

  • CIE - Commission Internationale de l’Eclairage (1978) Supplement Publication No. 2 to CIE Publication No. 15: Recommendations on uniform colour spaces, colour-difference equations, and psychometric colour terms, Vienna

  • CIE - Commission Internationale de l’Eclairage (1996) Colorimetry. CIE 15.2/1986, Corrected reprint of the technical report, 2nd edn. Vienna

  • Cooper GRJ, Cowan DR (2009) Blocking geophysical borehole log data using the continuous wavelet transform. Explor Geophy 40:233–236. doi:10.1071/EG08127

    Article  Google Scholar 

  • Cooper SS, Malone PG (1992) Device for measuring reflectance and fluorescence of in situ soil. US Patent 5.128.882, Date issued: 7 July, p 8

  • Dalan RA, Bevan BW, Goodman D, Lynch D, De Vore S, Adamek S, Martin T, Holley G, Michlovic M (2011) The measurement and analysis of depth in archaeological geophysics: tests at the Biesterfeldt site, USA. Archaeol Prospect 18:245–265. doi:10.1002/arp.419

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Dietrich P, Leven C (2006) Direct Push-technologies. In: Kirsch J (ed) Groundwater geophysics. Springer, Berlin, pp 321–340

    Chapter  Google Scholar 

  • Duchesne MJ, Gaillot P (2011) Did you smooth your well logs the right way for seismic interpretation? J Geophy Eng 8:514–523. doi:10.1088/1742-2132/8/4/004

    Article  Google Scholar 

  • Eckmeier E, Mavris C, Krebs R, Pichler B, Egli M (2013) Black carbon contributes to organic matter in young soils in the Morteratsch proglacial area (Switzerland). Biogeosciences 10:1265–1274. doi:10.5194/bg-10-1265-2013

    Article  Google Scholar 

  • Gocke M, Hambach U, Eckmeier E, Schwark L, Zöller L, Fuchs M, Löscher M, Wiesenberg GLB (2014) Introducing an improved multi-proxy approach for paleoenvironmental reconstruction of loess–paleosol archives applied on the Late Pleistocene Nussloch sequence (SW Germany). Palaeogeogr Palaeoclim 410:300–315. doi:10.1016/j.palaeo.2014.06.006

    Article  Google Scholar 

  • Gómez-Robledo L, López-Ruiz N, Melgosa M, Palma AJ, Capitán-Vallvey LF, Sánchez-Marañón M (2013) Using the mobile phone as Munsell soil-colour sensor: an experiment under controlled illumination conditions. Comput Electron Agric 99:200–208. doi:10.1016/j.compag.2013.10.002

    Article  Google Scholar 

  • Grey CE, Cooper SS, Malone PG (1993) Method and apparatus for in situ detection and determination of soil contaminants. US Patent 5.246.862, Date issued: 21 September, p 10

  • Hartemink AE, Minasny B (2014) Towards digital soil morphometrics. Geoderma 230–231:305–317. doi:10.1016/j.geoderma.2014.03.008

    Article  Google Scholar 

  • Hryciw RD, Shin S (2004) Thin layer and interface characterization by VisCPT. In: Proceedings of the 2nd international conference on site characterization ISC’2. Millpress, Porto, pp 701–706

  • Kemp DB (2014) Colorimetric characterisation of flatbed scanners for rock/sediment imaging. Comput Geosci 67:69–74. doi:10.1016/j.cageo.2014.03.002

    Article  Google Scholar 

  • Konen ME, Burras CL, Sandor JA (2003) Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Sci Soc Am J 67:1823–1830. doi:10.2136/sssaj2003.1823

    Article  Google Scholar 

  • Lee DS, Elsworth D, Hryciw R (2008) Hydraulic conductivity measurement from On-the-Fly uCPT sounding and from VisCPT. J Geotech Geoenviron Eng 134:1720–1729. doi:10.1061/(asce)1090-0241(2008)134:12(1720)

    Article  Google Scholar 

  • Leven C, Weiss H, Vienken T, Dietrich P (2011) Direct Push technologies-an efficient investigation method for subsurface characterization. Grundwasser 16:221–234. doi:10.1007/s00767-011-0175-8

    Article  Google Scholar 

  • Levin N, Ben-Dor E, Singer A (2005) A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments. Int J Remote Sens 26:5475–5492. doi:10.1080/01431160500099444

    Article  Google Scholar 

  • Lieberman SH (1998) Direct-push, fluorescence-based sensor systems for in situ measurement of petroleum hydrocarbons in soils. Field Anal Chem Technol 2:63–73. doi:10.1002/(Sici)1520-6521(1998)2:2<63:Aid-Fact2>3.0.Co;2-F

    Article  Google Scholar 

  • Lieberman SH, Knowles DS (1998) Cone penetrometer deployable in situ video microscope for characterizing sub-surface soil properties. Field Anal Chem Technol 2:127–132. doi:10.1002/(sici)1520-6521(1998)2:2<127:aid-fact9>3.0.co;2-t

    Article  Google Scholar 

  • Lukić T, Basarin B, Buggle B, Markovič SB, Tomović VM, Raljič JP, Hrnjak I, Timar-Gabor A, Hambach U, Gavrilov MB (2014) A joined rock magnetic and colorimetric perspective on the Late Pleistocene climate of Orlovat loess site (Northern Serbia). Quat Int 334–335:179–188. doi:10.1016/j.quaint.2014.03.042

    Google Scholar 

  • Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. Spon Press Taylor & Francis Group, London

    Google Scholar 

  • Madeira J, Bedidi A, Cervelle B, Pouget M, Flay N (1997) Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. Int J Remote Sens 18:2835–2852. doi:10.1080/014311697217369

    Article  Google Scholar 

  • Mallat S (2003) A wavelet tour of signal processing. Academic Press, Boston

    Google Scholar 

  • Matney T, Barrett LR, Dawadi MB, Maki D, Maxton C, Perry DS, Roper DC, Somers L, Whitman LG (2014) In situ shallow subsurface reflectance spectroscopy of archaeological soils and features: a case-study of two Native American settlement sites in Kansas. J Archaeol Sci 43:315–324. doi:10.1016/j.jas.2013.11.027

    Article  Google Scholar 

  • McCall GW, Nielsen DM, Farrington SP, Christy TM (2005) Use of direct-push technologies in environmental site characterization and ground-water monitoring. In: Nielsen DM (ed) Practical handbook of environmental site characterization and ground-water. CRS Press Taylor and Francis Group, Boca Raton, pp 345–471

    Google Scholar 

  • Meigh AC (1987) Cone penetration testing: methods and interpretation. Butterworths, London

    Google Scholar 

  • Munsell Color Company (1994) Munsell soil color charts, revised edn. Macbeth Division of Kollmorgen Instruments Corporation, New Windsor

    Google Scholar 

  • Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228. doi:10.1016/j.jhydrol.2012.09.049

    Article  Google Scholar 

  • Nau G, Bucholtz F, Ewing KJ, Vohra ST, Sanghera JS, Aggarwal ID (1995) Fiber optic IR reflectance sensor for the cone penetrometer. Environ Monitor Hazard Waste Site Remed 2504:291–296. doi:10.1117/12.224110

    Article  Google Scholar 

  • Ohta N, Robertson AR (2005) Colorimetry: fundamentals and applications. Wiley-IS&T series in imaging science and technology, Chichester

    Book  Google Scholar 

  • Pan SY, Hsieh BZ, Lu MT, Lin ZS (2008) Identification of stratigraphic formation interfaces using wavelet and Fourier transforms. Comput Geosci 34:77–92. doi:10.1016/j.cageo.2007.01.002

    Article  Google Scholar 

  • Persson M (2005) Estimating surface soil moisture from soil color using image analysis. Vadose Z J 4:1119–1122. doi:10.2136/Vzj2005.0023

    Article  Google Scholar 

  • Raschke SA, Hryciw RD (1997) Vision cone penetrometer for direct subsurface soil observation. J Geotech Geoenviron Eng 123:1074–1076. doi:10.1061/(asce)1090-0241(1997)123:11(1074)

    Article  Google Scholar 

  • Ray SS, Singh JP, Das G, Panigrahy S (2004) Use of high resolution remote sensing data for generating site specific soil management plan. Int Arch Photogramm Remote Sens Spatial Inf Sci 35:127–131

    Google Scholar 

  • Robertson PK, Campanella RG, Gillespie D, Greig J (1986) Use of piezometer cone data. In: Proceedings of the specialty conference in situ ‘86: use of in situ tests in geotechnical engineering, ASCE. Blacksburg, pp 1263–1280

  • Schanda J (2007) Colorimetry: understanding the CIE system. Wiley, Hoboken

    Book  Google Scholar 

  • Scheinost AC, Schwertmann U (1999) Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Sci Soc Am J 63:1463–1471

    Google Scholar 

  • Shields JA, Starnaud RJ, Paul EA, Clayton JS (1966) Measurement of soil color. Can J Soil Sci 46:83–90

    Article  Google Scholar 

  • Shum M, Lavkulich LM (1999) Use of sample color to estimate oxidized Fe content in mine waste rock. Environ Geol 37:281–289. doi:10.1007/s002540050385

    Article  Google Scholar 

  • Shumway RH, Stoffer DS (2011) Time series analysis and its applications. Springer, New York

    Book  Google Scholar 

  • Sperling O, Lazarovitch N (2010) Characterization of water infiltration and redistribution for two-dimensional soil profiles by moment analyses. Vadose Z J 9:438–444. doi:10.2136/Vzj2009.0098

    Article  Google Scholar 

  • St Germain RW, Adamek S, Rudolph T (2006) In situ characterization of NAPL with TarGOST® at MGP sites. Land Contam Reclam 14:573–578

    Article  Google Scholar 

  • Tallón-Armada R, Costa-Casais M, Schellekens J, Taboada Rodríguez T, Vives-Ferrándiz Sánchez J, Ferrer García C, Abel Schaad D, López-Sáez JA, Carrión Marco Y, Martínez Cortizas A (2014) Holocene environmental change in Eastern Spain reconstructed through the multiproxy study of a pedo-sedimentary sequence from Les Alcusses (Valencia, Spain). J Archaeol Sci 47:22–38. doi:10.1016/j.jas.2014.03.023

    Article  Google Scholar 

  • Torrent J, Barrón V (1993) Laboratory measurement of soil color: theory and practice. In: Bigham JM, Ciolkosz EJ, Luxmoore RJ (eds) soil color, 1st edn. SSSA, Madison, pp 21–33

    Google Scholar 

  • Torrent J, Schwertmann U, Fechter H, Alferez F (1983) Quantitative relationships between soil color and hematite content. Soil Sci 136:354–358. doi:10.1097/00010694-198312000-00004

    Article  Google Scholar 

  • van den Boogaart J, van Deen JK, Kinneging NA, Meyer JG, van Ree CCDF (2002) The camera cone as an effective site screening tool. In: Breh W, Gottlieb J, Hötzl H, Kern F, Liesch T, Niessner R (eds) Proceedings of the field screening Europe 2001: 2nd international conference on strategies and technologies for the investigation and monitoring of contaminated sites. Kluwer Academic Publishers, Karlsruhe, pp 107–111

    Chapter  Google Scholar 

  • Vienken T, Leven C, Dietrich P (2012) Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization: a field study. Can Geotech J 49:197–206. doi:10.1139/T11-094

    Article  Google Scholar 

  • Vienken T, Reboulet E, Leven C, Kreck M, Zschornack L, Dietrich P (2013) Field comparison of selected methods for vertical soil water content profiling. J Hydrol 501:205–212

    Article  Google Scholar 

  • Viscarra Rossel RA, Minasny B, Roudier P, McBratney AB (2006a) Colour space models for soil science. Geoderma 133:320–337. doi:10.1016/j.geoderma.2005.07.017

    Article  Google Scholar 

  • Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006b) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75. doi:10.1016/j.geoderma.2005.03.007

    Article  Google Scholar 

  • Viscarra Rossel RA, Cattle SR, Ortega A, Fouad Y (2009) In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy. Geoderma 150:253–266. doi:10.1016/j.geoderma.2009.01.025

    Article  Google Scholar 

  • Wagner S, Eckmeier E, Skowronek A, Günster N (2015) Pedogenetic processes and pedostratigraphy of the quaternary on the Balearic Islands and in the Granada Basin, Spain. Quat Int 376:134–145. doi:10.1016/j.quaint.2015.01.036

    Article  Google Scholar 

  • Wills SA, Burras CL, Sandor JA (2007) Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Sci Soc Am J 71:380–388. doi:10.2136/sssaj2005.0384

    Article  Google Scholar 

  • Woodward CA, Sloss CR (2013) Coring and augering. In: Shroder JF (ed) Treatise on geomorphology. Academic Press, San Diego, pp 119–137

    Chapter  Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color Science: concepts and methods, quantitative data and formulae. Wiley, New York

    Google Scholar 

  • Zschornack L, Leven-Pfister C (2012) Introduction to Direct Push Technologies. In: Kästner M, Braeckevelt M, Döberl G, Cassiani G, Papini MP, Leven-Pfister C, Van Ree D (eds) Model-driven soil probing, site assessment and evaluation: guidance on technologies. Sapienza University of Rome, Rome, pp 149–161

    Google Scholar 

Download references

Acknowledgments

We would like to thank Andreas Schoßland, Helko Kotas, and Simon Kögler for their excellent field work and support; and Marcus Jenderka for providing programming assistance. The reviewers are acknowledged for their constructive comments that helped to improve the manuscript. This work was funded by the German Federal Ministry of Education and Research (BMBF) under grant 03G0745 (MuSaWa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hausmann.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “NovCare 2015-Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice”. Guest edited by Uta Sauer and Peter Dietrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure A.1

Conjunctional figure transforming colorimeter tristimuli data XYZ in norm standardized color systems: A) Normal distribution of the three color matching functions \({\overline{x}} ({\lambda})\), \({\overline{y}} (\lambda)\), and \({\overline{z}} ( \lambda)\) (CIE, 1931); B) \({\text{CIE}XYZ}\) color system (CIE, 1931) with the proportions of the tristimuli XYZ gained by conversion of the color matching functions; C) CIE (1931) 2° standard colorimetric observer and CIE 1964 10° supplementary standard colorimetric observer within the \({\text{CIE}xyY}\) system with added wavelength in nm; D) cubic \({{RGB}}\) color system as a mixture between red \({{R}}\), green \({{G}}\), and blue \({{B}}\) base colors; E) Cartesian \({\text{CIE}}L^{*} a^{*} b^{*}\) color system with luminosity \({{L}}^{ *}\) (0 – 100), green/red ratio \(\it {\text{a}}^{ *}\) and yellow/blue ratio \({{b}}^{ *}\); F) cylindrical \({\text{CIE}}L^{*} c^{*} h^{*}\) color system with chroma \({{c}}^{ *}\) and hue \({{h}}^{ *}\). (TIFF 11636 kb)

Table A.1

Summary of applied formulas, key parameters, and related references of soil color surrogates; color space indicated by letters: A) \({\text{CIE}XYZ}\), B) \({\text{CIE}xyY}\), C) \({\text{CIE}}L^{*} a^{*} b^{*}\), D) \({\text{CIE}}L^{*} c^{*} h^{*}\), E) \({{sRGB}}\), F) \({{RGB}}\). (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausmann, J., Dietrich, P., Vienken, T. et al. Technique, analysis routines, and application of direct push-driven in situ color logging. Environ Earth Sci 75, 957 (2016). https://doi.org/10.1007/s12665-016-5515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5515-7

Keywords

Navigation