Skip to main content

Advertisement

Log in

Altered expression of LINC-ROR in cancer cell lines and tissues

  • Original Article
  • Published:
Tumor Biology

Abstract

According to GLOBOCAN 2012, the worldwide burden of cancer increased and is expected to worsen within the next decades. Therefore, universal combat against cancer will not succeed with treatment solely; effective prevention and early detection are urgently needed to tackle the cancer crisis. Emerging data demonstrate that long non-coding RNAs are involved in numerous biological and pathological processes like development and differentiation and in a variety of human diseases including cancer. Located at 18q21, LINC-ROR (regulator of reprogramming) is a modulator of ESCs maintenance and hypoxia-signaling pathways in hepatocellular cancer cells. The aim of this study was to examine the expression of LINC-ROR in various cell lines and representative samples of human cancers by quantitative real-time RT-PCR to provide a snapshot on how LINC-ROR expression may be deregulated in cancer. More than 30 cell lines and 112 patient specimens from various tissues were assessed for relative expression of LINC-ROR. Our results revealed that the expression of LINC-ROR was lower in all somatic cancer cell lines compared to stem cells or cells with stem cell-like capabilities, like the embryonic carcinoma cell line, NTERA-2. In tissues, expression patterns vary, but some cancerous tissues displayed increased LINC-ROR expression compared to corresponding normal tissues. Thus, we hypothesize that LINC-ROR may have a key function in a subpopulation of cells from the tumor bulk, i.e., the cancer stem cells associated with specific properties including resistance to adverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. http://globocan.iarc.fr. 2014.

  2. Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi:10.1038/nature11247.

    Article  Google Scholar 

  3. Yavartanoo M, Choi JK. ENCODE: a sourcebook of epigenomes and chromatin language. Genomics Inform. 2013;11(1):2–6. doi:10.5808/GI.2013.11.1.2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation. Epigenetics and human disease. ChemMedChem. 2014. doi:10.1002/cmdc.201300534.

    PubMed  Google Scholar 

  5. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–69. doi:10.1534/genetics.112.146704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. doi:10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  7. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J Mol Sci. 2013;14(9):18790–808. doi:10.3390/ijms140918790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69. doi:10.1016/j.cell.2011.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147(2):344–57. doi:10.1016/j.cell.2011.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25(1):69–80. doi:10.1016/j.devcel.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng EC, Lin H. Repressing the repressor: a lincRNA as a MicroRNA sponge in embryonic stem cell self-renewal. Dev Cell. 2013;25(1):1–2. doi:10.1016/j.devcel.2013.03.020.

    Article  CAS  PubMed  Google Scholar 

  13. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7. doi:10.1038/ng.710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 2013;23(3):340–50. doi:10.1038/cr.2012.164.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Yan IK, Haga H, Patel T. Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci. 2014;127(Pt 7):1585–94. doi:10.1242/jcs.141069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol. 2014;133(2):333–9. doi:10.1016/j.ygyno.2014.02.033.

    Article  CAS  PubMed  Google Scholar 

  17. Nikpour P, Baygi ME, Steinhoff C, Hader C, Luca AC, Mowla SJ, et al. The RNA binding protein Musashi1 regulates apoptosis, gene expression and stress granule formation in urothelial carcinoma cells. J Cell Mol Med. 2011;15(5):1210–24. doi:10.1111/j.1582-4934.2010.01090.x.

    Article  CAS  PubMed  Google Scholar 

  18. Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, et al. Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Develop Growth Differ. 2006;48(2):117–28. doi:10.1111/j.1440-169X.2006.00851.x.

    Article  Google Scholar 

  19. Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis. 2014;5:e1287. doi:10.1038/cddis.2014.249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mitelman F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations and gene fusions in cancer. 2015. http://cgap.nci.nih.gov/Chromosomes/Mitelman.

  21. Cai T, Nesi G, Dal Canto M, Mondaini N, Piazzini M, Bartoletti R. Prognostic role of loss of heterozygosity on chromosome 18 in patients with low-risk nonmuscle-invasive bladder cancer: results from a prospective study. J Surg Res. 2010;161(1):89–94. doi:10.1016/j.jss.2008.10.017.

    Article  CAS  PubMed  Google Scholar 

  22. Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene. 2004;23(12):2250–63. doi:10.1038/sj.onc.1207260.

    Article  CAS  PubMed  Google Scholar 

  23. Prat E, Bernues M, Caballin MR, Egozcue J, Gelabert A, Miro R. Detection of chromosomal imbalances in papillary bladder tumors by comparative genomic hybridization. Urology. 2001;57(5):986–92.

    Article  CAS  PubMed  Google Scholar 

  24. Liu YY, Chen HY, Zhang ML, Tian D, Li S, Lee JY. Loss of fragile histidine triad and amplification of 1p36.22 and 11p15.5 in primary gastric adenocarcinomas. World J Gastroenterol WJG. 2012;18(33):4522–32. doi:10.3748/wjg.v18.i33.4522.

    Article  CAS  PubMed  Google Scholar 

  25. Hiyama T, Tanaka S, Yoshihara M, Sasao S, Kose K, Shima H, et al. Chromosomal and microsatellite instability in sporadic gastric cancer. J Gastroenterol Hepatol. 2004;19(7):756–60. doi:10.1111/j.1440-1746.2004.03369.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant to MR and PN from Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. Authors would like to thank Dr Narges Abdian for her great help in some experiments.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Nikpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Emadi-Baygi, M., Hoffmann, M.J. et al. Altered expression of LINC-ROR in cancer cell lines and tissues. Tumor Biol. 37, 1763–1769 (2016). https://doi.org/10.1007/s13277-015-3933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3933-x

Keywords

Navigation