Skip to main content

Advertisement

Log in

Clinical benefits of introducing real-time multiplex PCR for cerebrospinal fluid as routine diagnostic at a tertiary care pediatric center

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

Sepsis-like illness with suspected meningitis or encephalitis is a common reason for using empiric antimicrobial therapy in infants and children. However, in cases of viral meningitis not covered by these antimicrobials, this management is ineffective and due to side effects potentially harmful.

Methods

A retrospective analysis of cerebrospinal fluid (CSF) multiplex PCRs (Biofire FilmArray®) in children with clinical suspicion of meningitis, encephalitis or sepsis-like illness was performed over the period of 1 year. Subsequently, a subgroup of children (age of 8–84 days of life) diagnosed with viral meningitis (enterovirus, HHV-6, human parechovirus) was compared to an age-matched control group.

Results

During the study period, the multiplex PCR panel was performed on 187 individual CSF samples that met the inclusion criteria. About half of the patients (92/187) were less than 1 year of age. In 27 cases (14.4%), the PCR yielded a positive result with the majority (12/27) being indicative of an enteroviral infection. In the age group of 8–84 days of life, 36.4% of the patients had a positive result. When the patients with a PCR positive for a viral agent were compared to an age-matched group of patients, no differences were observed regarding symptoms and laboratory parameters. However, the duration of antimicrobial therapy could be significantly reduced through the use of multiplex PCR.

Conclusion

The use of on-site diagnostic multiplex PCR was able to reduce the use of antimicrobials in selected cases. This test can guide clinical decisions earlier during the course of medical care compared to standard diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aronson PL. Evaluation of the febrile young infant: an update. Pediatr Emerg Med Pract. 2013;10:1–17.

    PubMed  Google Scholar 

  2. Franco-Paredes C, Lammoglia L, Hernandez I, Santos-Preciado JI. Epidemiology and outcomes of bacterial meningitis in Mexican children: 10-year experience (1993–2003). Int J Infect Dis IJID. 2008;12:380–6.

    Article  PubMed  Google Scholar 

  3. Ku LC, Boggess KA, Cohen-Wolkowiez M. Bacterial meningitis in infants. Clin Perinatol. 2015;42:29–45 (vii–viii).

    Article  PubMed  Google Scholar 

  4. Silverman MA, Konnikova L, Gerber JS. Impact of antibiotics on necrotizing enterocolitis and antibiotic-associated diarrhea. Gastroenterol Clin N Am. 2017;46:61–76.

    Article  Google Scholar 

  5. Yamamoto-Hanada K, Yang L, Narita M, Saito H, Ohya Y. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann Allergy Asthma Immunol. 2017;119:54–8.

    Article  CAS  PubMed  Google Scholar 

  6. Korpela K, Zijlmans MA, Kuitunen M, Kukkonen K, Savilahti E, Salonen A, de Weerth C, de Vos WM. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr. 2017;106:87–94.

    Article  PubMed  Google Scholar 

  8. Arora HS, Asmar BI, Salimnia H, Agarwal P, Chawla S, Abdel-Haq N. Enhanced identification of group B Streptococcus and Escherichia Coli in young infants with meningitis using the biofire filmarray meningitis/encephalitis panel. Pediatr Infect Dis J. 2017;36:685–7.

    Article  PubMed  Google Scholar 

  9. Jorgensen MPHJ, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW. Manual of clinical microbiology. Washington, DC: ASM Press, 2015.

    Google Scholar 

  10. Olijve L, Jennings L, Walls T. Human parechovirus: an increasingly recognized cause of sepsis-like illness in young infants. Clin Microbiol Rev. 2018;31:1–17.

    Google Scholar 

  11. Sharp J, Harrison CJ, Puckett K, Selvaraju SB, Penaranda S, Nix WA, Oberste MS, Selvarangan R. Characteristics of young infants in whom human parechovirus, enterovirus or neither were detected in cerebrospinal fluid during sepsis evaluations. Pediatr Infect Dis J. 2013;32:213–6.

    PubMed  PubMed Central  Google Scholar 

  12. Diaz MG, Garcia RP, Gamero DB, Gonzalez-Tome MI, Romero PC, Ferrer MM, Contreras JR. Lack of accuracy of biomarkers and physical examination to detect bacterial infection in febrile infants. Pediatr Emerg Care. 2016;32:664–8.

    Article  PubMed  Google Scholar 

  13. Stiemsma LT, Michels KB. The role of the microbiome in the developmental origins of health and disease. Pediatrics. 2018;141:1–22.

    Article  Google Scholar 

  14. Scott FI, Horton DB, Mamtani R, Haynes K, Goldberg DS, Lee DY, Lewis JD. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology. 2016;151:120–9 e125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boussioux C, Rousseau C, Salmona M, Bourdon N, Durand C, Delaire C, Simon F, Gonzalez R, Lallement J, Legoff J. Comparison of FILMARRAY meningitis/encephalitis (ME) panel assay and conventional techniques on the turnaround time of cerebrospinal fluid microbiological testing., ECCMID 2016, 2016.

  16. de Jong EP, van den Beuken MGA, van Elzakker EPM, Wolthers KC, Sprij AJ, Lopriore E, Walther FJ, Brus F. Epidemiology of sepsis-like illness in young infants: major role of enterovirus and human parechovirus. Pediatr Infect Dis J. 2018;37:113–8.

    Article  PubMed  Google Scholar 

  17. Pons-Salort M, Oberste MS, Pallansch MA, Abedi GR, Takahashi S, Grenfell BT, Grassly NC. The seasonality of nonpolio enteroviruses in the United States: patterns and drivers. Proc Natl Acad Sci USA. 2018;115:3078–83.

    Article  CAS  PubMed  Google Scholar 

  18. Teoh HL, Mohammad SS, Britton PN, Kandula T, Lorentzos MS, Booy R, Jones CA, Rawlinson W, Ramachandran V, Rodriguez ML, et al. Clinical characteristics and functional motor outcomes of enterovirus 71 neurological disease in children. JAMA Neurol. 2016;73:300–7.

    Article  PubMed  Google Scholar 

  19. Hixon AM, Clarke P, Tyler KL. Evaluating treatment efficacy in a mouse model of enterovirus D68-associated paralytic myelitis. J Infect Dis. 2017;216:1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bissel SJ, Auer RN, Chiang CH, Kofler J, Murdoch GH, Nix WA, Painter M, Richer M, Sartelet H, Wang G, et al. Human parechovirus 3 meningitis and fatal leukoencephalopathy. J Neuropathol Exp Neurol. 2015;74:767–77.

    Article  PubMed  Google Scholar 

  21. Britton PN, Dale RC, Nissen MD, Crawford N, Elliott E, Macartney K, Khandaker G, Booy R, Jones CA. Parechovirus encephalitis and neurodevelopmental outcomes. Pediatrics. 2016;137:e20152848.

    Article  PubMed  Google Scholar 

  22. Wildenbeest JG, Wolthers KC, Straver B, Pajkrt D. Successful IVIG treatment of human parechovirus-associated dilated cardiomyopathy in an infant. Pediatrics. 2013;132:e243–7.

    Article  PubMed  Google Scholar 

  23. Green DA, Pereira M, Miko B, Radmard S, Whittier S, Thakur K. Clinical significance of human herpesvirus 6 positivity on the FilmArray meningitis/encephalitis multiplex PCR panel. Clin Infect Dis. 2018. https://doi.org/10.1093/cid/ciy288.

    Article  PubMed  Google Scholar 

  24. Asano Y, Yoshikawa T, Suga S, Kobayashi I, Nakashima T, Yazaki T, Kajita Y, Ozaki T. Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics. 1994;93:104–8.

    CAS  PubMed  Google Scholar 

  25. Zhang E, Bell AJ, Wilkie GS, Suarez NM, Batini C, Veal CD, Armendariz-Castillo I, Neumann R, Cotton VE, Huang Y, et al. Inherited chromosomally integrated human herpesvirus 6 genomes are ancient, intact, and potentially able to reactivate from telomeres. J Virol. 2017;91:1–19.

    Google Scholar 

  26. Caserta MT, Hall CB, Schnabel K, McIntyre K, Long C, Costanzo M, Dewhurst S, Insel R, Epstein LG. Neuroinvasion and persistence of human herpesvirus 6 in children. J Infect Dis. 1994;170:1586–9.

    Article  CAS  PubMed  Google Scholar 

  27. Basmaci R, Mariani P, Delacroix G, Azib S, Faye A, Taha MK, Bingen E, Bonacorsi S, Romero JR, Rotbart HA, et al. Enteroviral meningitis does not exclude concurrent bacterial meningitis. J Clin Microbiol. 2011;49:3442–3.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Piccirilli G, Chiereghin A, Gabrielli L, Giannella M, Squarzoni D, Turello G, Felici S, Vocale C, Zuntini R, Gibertoni D, et al. Infectious meningitis/encephalitis: evaluation of a rapid and fully automated multiplex PCR in the microbiological diagnostic workup. New Microbiol. 2018;41:118–25.

    CAS  PubMed  Google Scholar 

  29. Naccache SN, Lustestica M, Fahit M, Mestas J, Bard JD. One year in the life of a rapid syndromic panel for meningitis/encephalitis: a pediatric tertiary care facility’s experience. J Clin Microbiol. 2018;56:1–11.

    Article  Google Scholar 

  30. Dien Bard J, Alby K. Point-counterpoint: meningitis/encephalitis syndromic testing in the clinical laboratory. J Clin Microbiol. 2018;56:1–10.

    Article  Google Scholar 

  31. Rossi AF, Khan D. Point of care testing: improving pediatric outcomes. Clin Biochem. 2004;37:456–61.

    Article  PubMed  Google Scholar 

  32. Ferreira CES, Guerra JCC, Slhessarenko N, Scartezini M, Franca CN, Colombini MP, Berlitz F, Machado AMO, Campana GA, Faulhaber ACL, et al. Point-of-care testing: general aspects. Clin Lab. 2018;64:1–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Huebner.

Ethics declarations

Conflict of interest

JH has received speaker fees and MMB has been invited to a seminar by BioMerieux, and the other authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 111 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichinger, A., Hagen, A., Meyer-Bühn, M. et al. Clinical benefits of introducing real-time multiplex PCR for cerebrospinal fluid as routine diagnostic at a tertiary care pediatric center. Infection 47, 51–58 (2019). https://doi.org/10.1007/s15010-018-1212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-018-1212-7

Keywords

Navigation