Skip to main content
Log in

Pharmacokinetic Modelling of Efavirenz, Atazanavir, Lamivudine and Tenofovir in the Female Genital Tract of HIV-Infected Pre-Menopausal Women

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

A previously published study of antiretroviral pharmacokinetics in the female genital tract of HIV-infected women demonstrated differing degrees of female genital tract penetration among antiretrovirals. These blood plasma (BP) and cervicovaginal fluid (CVF) data were co-modelled for four antiretrovirals with varying CVF exposures.

Methods

Six paired BP and CVF samples were collected over 24 h, and antiretroviral concentrations determined using validated liquid chromatography (LC) with UV detection or LC-mass spectrometry analytical methods. For each antiretroviral, a BP model was fit using Bayesian estimation (ADAPT5), followed by addition of a CVF model. The final model was chosen based on graphical and statistical output, and then non-linear mixed-effects modelling using S-ADAPT was performed. Population mean parameters and their variability are reported. Model-predicated area under the concentration–time curve during the dosing interval (AUCτ) and exposure ratios of CVF AUCτ:BP AUCτ were calculated for each drug.

Results

The base model uses first-order absorption with a lag time, a two-compartment model, and a series of transit compartments that transfer the drug from BP to CVF. Protein-unbound drug transfers into CVF for efavirenz and atazanavir; total drug transfers for lamivudine and tenofovir. CVF follows a one-compartment model for efavirenz and atazanavir, and a two-compartment model for lamivudine and tenofovir. As expected, inter-individual variability was high. Model-predicted CVF AUCτ:BP AUCτ ratios are consistent with published results.

Conclusions

This is the first pharmacokinetic modelling of antiretroviral disposition in BP and CVF. These models will be further refined with tissue data, and used in clinical trials simulations to inform future studies of HIV pre-exposure prophylaxis in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365:493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. N Engl J Med. 2000;342:921–9.

    Article  CAS  PubMed  Google Scholar 

  3. Eron JJ Jr, Smeaton LM, Fiscus SA, Gulick RM, Currier JS, Lennox JL, et al. The effects of protease inhibitor therapy on human immunodeficiency virus type 1 levels in semen (AIDS Clinical Trials Group Protocol 850). J Infect Dis. 2000;181:1622–8.

    Article  CAS  PubMed  Google Scholar 

  4. Cu-Uvin S, Caliendo AM, Reinert S, Chang A, Juliano-Remollino C, Flanigan TP, et al. Effect of highly active antiretroviral therapy on cervicovaginal HIV-1 RNA. AIDS. 2000;14:415–21.

    Article  CAS  PubMed  Google Scholar 

  5. Launay O, Tod M, Tschöpe I, Si-Mohamed A, Bélarbi L, Charpentier C, et al. Residual HIV-1 RNA and HIV-1 DNA production in the genital tract reservoir of women treated with HAART: the prospective ANRS EP24 GYNODYN study. Antivir Ther. 2011;16:843–52.

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell C, Hitti J, Paul K, Agnew K, Cohn SE, Luque AE, et al. Cervicovaginal shedding of HIV type 1 is related to genital tract inflammation independent of changes in vaginal microbiota. AIDS Res Hum Retroviruses. 2011;27:35–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Henning TR, Kissinger P, Lacour N, Meyaski-Schluter M, Clark R, Amedee AM. Elevated cervical white blood cell infiltrate is associated with genital HIV detection in a longitudinal cohort of antiretroviral therapy-adherent women. J Infect Dis. 2010;202:1543–52.

    Article  PubMed  Google Scholar 

  8. Lorello G, la Porte C, Pilon R, Zhang G, Karnauchow T, MacPherson P. Discordance in HIV-1 viral loads and antiretroviral drug concentrations comparing semen and blood plasma. HIV Med. 2009;10:548–54.

    Article  CAS  PubMed  Google Scholar 

  9. Kovacs A, Wasserman SS, Burns D, Wright DJ, Cohn J, Landay A, et al. Determinants of HIV-1 shedding in the genital tract of women. Lancet. 2001;358:1593.

    Article  CAS  PubMed  Google Scholar 

  10. Si-Mohamed A, Kazatchkine MD, Heard I, Goujon C, Prazuck T, Aymard G, et al. Selection of drug-resistant variants in the female genital tract of human immunodeficiency virus type 1-infected women receiving antiretroviral therapy. J Infect Dis. 2000;182:112–22.

    Article  CAS  PubMed  Google Scholar 

  11. Else LJ, Taylor S, Back DJ, Khoo SH. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the male and female genital tract. Antivir Ther. 2011;16:1149–67.

    Article  CAS  PubMed  Google Scholar 

  12. Nicol MR, Kashuba ADM. Pharmacologic opportunities for HIV prevention. Clin Pharmacol Ther. 2010;88:598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dumond JB, Yeh RF, Patterson KB, Corbett AH, Jung BH, Rezk NL, et al. Antiretroviral drug exposure in the female genital tract: implications for oral pre- and post-exposure prophylaxis. AIDS. 2007;21:1899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bristol-Myers Squibb Company. Sustiva (efavirenz) full U.S. prescribing information. Princeton: Bristol-Myers Squibb Company; 2009.

    Google Scholar 

  15. Bristol-Myers Squibb Company. Reyataz (atazanavir) full U.S. prescribing information. Princeton: Bristol-Myers Squibb Company; 2009.

    Google Scholar 

  16. Gilead Sciences. Viread full U.S. prescribing information. Foster City: Gilead Sciences; 2012.

    Google Scholar 

  17. ViiV Healthcase/GlaxoSmithKline. Epivir full U.S. prescribing information. Research Triangle Park: ViiV Healthcase/GlaxoSmithKline; 2011.

    Google Scholar 

  18. Jung BH, Rezk NL, Bridges AS, Corbett AH, Kashuba ADM. Simultaneous determination of 17 antiretroviral drugs in human plasma for quantitative analysis with liquid chromatography–tandem mass spectrometry. Biomed Chromatogr. 2007;21:1095–104.

    Article  CAS  PubMed  Google Scholar 

  19. Rezk NL, Crutchley RD, Kashuba ADM. Simultaneous quantification of emtricitabine and tenofovir in human plasma using high-performance liquid chromatography after solid phase extraction. J Chromatogr B Anal Technol Biomed Life Sci. 2005;822:201–8.

    Article  CAS  Google Scholar 

  20. Rezk NL, Tidwell RR, Kashuba ADM. Simultaneous determination of six HIV nucleoside analogue reverse transcriptase inhibitors and nevirapine by liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Anal Technol Biomed Life Sci. 2003;791:137–47.

    Article  CAS  Google Scholar 

  21. Rezk NL, Tidwell RR, Kashuba ADM. High-performance liquid chromatography assay for the quantification of HIV protease inhibitors and non-nucleoside reverse transcriptase inhibitors in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2004;805:241–7.

    Article  CAS  Google Scholar 

  22. Rezk NLMS, Crutchley RD, Yeh RFP, Kashuba ADMP. Full validation of an analytical method for the HIV-protease inhibitor atazanavir in combination with 8 other antiretroviral agents and its applicability to therapeutic drug monitoring. Ther Drug Monit. 2006;28:517–25.

    Article  CAS  PubMed  Google Scholar 

  23. D’Argenio DZ, Schumitzky A, Wang X. ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009.

    Google Scholar 

  24. D’Argenio DZ, Schumitzky A. A program package for simulation and parameter estimation in pharmacokinetic systems. Comput Programs Biomed. 1979;9:115–34.

    Article  PubMed  Google Scholar 

  25. Beijnen JH, Huitema ADR, Kappelhoff BS, Meenhorst PL, Mulder JW, Prins JM, et al. Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected individuals. Clin Pharmacokinet. 2005;44:849–61.

    Article  PubMed  Google Scholar 

  26. Colombo S, Buclin T, Cavassini M, Décosterd LA, Telenti A, Biollaz J, et al. Population pharmacokinetics of atazanavir in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother. 2006;50:3801–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jullien V, Tréluyer J-M, Rey E, Jaffray P, Krivine A, Moachon L, et al. Population pharmacokinetics of tenofovir in human immunodeficiency virus-infected patients taking highly active antiretroviral therapy. Antimicrob Agents Chemother. 2005;49:3361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore KHP, Yuen GJ, Hussey EK, Pakes GE, Eron JJ, Bartlett JA. Population pharmacokinetics of lamivudine in adult human immunodeficiency virus-infected patients enrolled in two phase III clinical trials. Antimicrob Agents Chemother. 1999;43:3025–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.

    Article  Google Scholar 

  30. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504.

    Article  CAS  PubMed  Google Scholar 

  31. Bulitta J, Bingölbali A, Shin B, Landersdorfer C. Development of a new pre- and post-processing tool (SADAPT-TRAN) for nonlinear mixed-effects modeling in S-ADAPT. AAPS J. 2011;13:201–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bulitta J, Landersdorfer C. Performance and robustness of the Monte Carlo importance sampling algorithm using parallelized S-ADAPT for basic and complex mechanistic models. AAPS J. 2011;13:212–26.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Okusanya OO, Hamel J, Rubino CM. SADAPTPlot—an easy-to-use R package for S-ADAPT population analysis post-processing [poster]. American Conference on Pharmacometrics; 2011 Apr 4–7; San Diego.

  34. Gagnieu M-C, Barkil ME, Livrozet J-M, Cotte L, Miailhes P, Boibieux A, et al. Population pharmacokinetics of tenofovir in AIDS patients. J Clin Pharmacol. 2008;48:1282–8.

    Article  CAS  PubMed  Google Scholar 

  35. Patterson KB, Prince HA, Kraft E, Jenkins AJ, Shaheen NJ, Rooney JF, et al. Penetration of tenofovir and emtricitabine in mucosal tissues: implications for prevention of HIV-1 transmission. Sci Transl Med. 2011;3:112re4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Parkin NT, Hellmann NS, Whitcomb JM, Kiss L, Chappey C, Petropoulos CJ. Natural variation of drug susceptibility in wild-type human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2004;48:437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salas Herrera IG, Pearson RM, Turner P. Quantitation of albumin and alpha-1-acid glycoprotein in human cervical mucus. Hum Exp Toxicol. 1991;10:137–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dumond JBP, Patterson KBMD, Pecha ALP, Werner REBS, Andrews EP, Damle BP, et al. Maraviroc concentrates in the cervicovaginal fluid and vaginal tissue of HIV-negative women. J Acquir Immune Defic Syndr. 2009;51:546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bonnet B, Diquet B, Duval X, Goujard C, Katlama C, Legrand M, et al. High variability of indinavir and nelfinavir pharmacokinetics in HIV-infected patients with a sustained virological response on highly active antiretroviral therapy. Clin Pharmacokinet. 2005;44:1267–78.

    Article  PubMed  Google Scholar 

  40. Nettles RE, Kieffer TL, Parsons T, Johnson J, Cofrancesco J Jr, Gallant JE, et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring. Clin Infect Dis. 2006;42:1189–96.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu M, Kaul S, Nandy P, Grasela DM, Pfister M. Model-based approach to characterize efavirenz autoinduction and concurrent enzyme induction with carbamazepine. Antimicrob Agents Chemother. 2009;53:2346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the participating subjects, as well as the staff of the UNC Healthcare Infectious Disease Clinic for their assistance with recruitment. We also thank the nurses of the UNC CTRC for their assistance in conducting study visits. This work was presented in part at the 13th International Workshop on Clinical Pharmacology of HIV Therapy, 16–18 April 2012, Barcelona, Spain. Financial support for this work was provided by the UNC Center for AIDS Research (5P30AI050410-13—J.B. Dumond, K.B. Patterson, A.D.M. Kashuba), the NC TraCS Institute (UL1RR025747—J.B. Dumond) and the National Institute of Allergy and Infectious Diseases (K23AI093156—J.B. Dumond; K23AI077355-KBP; K23AI54980—A.D.M. Kashuba; U01AI095031—A.D.M. Kashuba). These funding sources provided salary support and funds for research conduct, but did not have any input into study design, study analysis or reporting of study results.

Conflict of interest

A.D.M. Kashuba has received research funding and speaking honoraria from Bristol-Myers Squibb, Merck, Gilead and GlaxoSmithKline. K.B. Patterson has received research funding from GlaxoSmithKline. The other authors have no conflicts of interest that are directly relevant to the content of this study.

Author contributions

J.B. Dumond: data collection, data analysis, including the original publication and current modelling applications, primary author of the original and current manuscript. M.R. Nicol: data analysis of atazanavir, critical review of the manuscript. R.N. Kendrick: data analysis of lamivudine, critical review of the manuscript. S.M. Garonzik: data analysis of the current modelling applications, critical review of the manuscript. K.B. Patterson: data collection, critical review of the original and current manuscript. M.S. Cohen: conceptual design of original study, critical review of the original and current manuscript. A. Forrest: data analysis of the current modelling applications, critical review of the manuscript. A.D.M. Kashuba: conceptual design of original study, data collection, data analysis of the original publication, funding of the original study, critical review of the original and current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie B. Dumond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumond, J.B., Nicol, M.R., Kendrick, R.N. et al. Pharmacokinetic Modelling of Efavirenz, Atazanavir, Lamivudine and Tenofovir in the Female Genital Tract of HIV-Infected Pre-Menopausal Women. Clin Pharmacokinet 51, 809–822 (2012). https://doi.org/10.1007/s40262-012-0012-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0012-y

Keywords

Navigation