Skip to main content
Log in

Activation of AMPK and its Impact on Exercise Capacity

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Activation of the adenosine monophosphate (AMP)-activated kinase (AMPK) contributes to beneficial effects such as improvement of the hyperglycemic state in diabetes as well as reduction of obesity and inflammatory processes. Furthermore, stimulation of AMPK activity has been associated with increased exercise capacity. A study published in 2008, directly before the Olympic Games in Beijing, showed that the AMPK activator AICAR (5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide) increased the running capacity of mice without any training and thus, prompted the World Anti-Doping Agency (WADA) to include certain AMPK activators in the list of forbidden drugs. This raises the question as to whether all AMPK activators should be considered for registration or whether the increase in exercise performance is only associated with specific AMPK-activating substances. In this review, we intend to shed light on currently published AMPK-activating drugs, their working mechanisms, and their impact on body fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8.

    CAS  PubMed  Google Scholar 

  2. Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc. 2011;86(3):564–600.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol. 1988;254(3 Pt 1):E248–59.

    CAS  PubMed  Google Scholar 

  4. Koval JA, Maezono K, Patti ME, Pendergrass M, DeFronzo RA, Mandarino LJ. Effects of exercise and insulin on insulin signaling proteins in human skeletal muscle. Med Sci Sports Exerc. 1999;31(7):998–1004.

    Article  CAS  PubMed  Google Scholar 

  5. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8(10):774–85.

    Article  CAS  PubMed  Google Scholar 

  6. Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997;273(6 Pt 1):E1107–12.

    CAS  PubMed  Google Scholar 

  7. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004;279(13):12005–8.

    Article  CAS  PubMed  Google Scholar 

  8. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002;277(28):25226–32.

    Article  CAS  PubMed  Google Scholar 

  11. Koistinen HA, Galuska D, Chibalin AV, Yang J, Zierath JR, Holman GD, et al. 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes. 2003;52(5):1066–72.

    Article  CAS  PubMed  Google Scholar 

  12. Cuthbertson DJ, Babraj JA, Mustard KJ, Towler MC, Green KA, Wackerhage H, et al. 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes. 2007;56(8):2078–84.

    Article  CAS  PubMed  Google Scholar 

  13. Boon H, Bosselaar M, Praet SF, Blaak EE, Saris WH, Wagenmakers AJ, et al. Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia. 2008;51(10):1893–900.

    Article  CAS  PubMed  Google Scholar 

  14. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996;271(2):611–4.

    Article  CAS  PubMed  Google Scholar 

  15. Thornton C, Snowden MA, Carling D. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem. 1998;273(20):12443–50.

    Article  CAS  PubMed  Google Scholar 

  16. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J. 2000;15(346 Pt 3):659–69.

    Article  Google Scholar 

  17. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 1998;273(52):35347–54.

    Article  CAS  PubMed  Google Scholar 

  18. Iseli TJ, Walter M, van Denderen BJ, Katsis F, Witters LA, Kemp BE, et al. AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270). J Biol Chem. 2005;280(14):13395–400.

    Article  CAS  PubMed  Google Scholar 

  19. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature. 2007;449(7161):496–500.

    Article  CAS  PubMed  Google Scholar 

  20. Carling D, Thornton C, Woods A, Sanders MJ. AMP-activated protein kinase: new regulation, new roles? Biochem J. 2012;445(1):11–27.

    Article  CAS  PubMed  Google Scholar 

  21. Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA, et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 2003;22(12):3062–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24(10):1810–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kitani T, Okuno S, Fujisawa H. Molecular cloning of Ca2+/calmodulin-dependent protein kinase kinase beta. J Biochem. 1997;122(1):243–50.

    Article  CAS  PubMed  Google Scholar 

  25. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 1995;270(45):27186–91.

    Article  CAS  PubMed  Google Scholar 

  26. Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006;281(35):25336–43.

    Article  CAS  PubMed  Google Scholar 

  27. Broberg S, Sahlin K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol. 1989;67(1):116–22.

    CAS  PubMed  Google Scholar 

  28. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996;270(2 Pt 1):E299–304.

    CAS  PubMed  Google Scholar 

  29. Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000;279(5):E1202–6.

    CAS  PubMed  Google Scholar 

  30. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150–5.

    Article  CAS  PubMed  Google Scholar 

  31. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;1(528 Pt 1):221–6.

    Article  Google Scholar 

  32. Birk JB, Wojtaszewski JF. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol. 2006;577(Pt 3):1021–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Treebak JT, Birk JB, Rose AJ, Kiens B, Richter EA, Wojtaszewski JF. AS160 phosphorylation is associated with activation of alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am J Physiol Endocrinol Metab. 2007;292(3):E715–22.

    Article  CAS  PubMed  Google Scholar 

  34. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418(2):261–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001;7(5):1085–94.

    Article  CAS  PubMed  Google Scholar 

  36. Lantier L, Fentz J, Mounier R, Leclerc J, Treebak JT, Pehmoller C, et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 2014;28(7):3211–24.

    Article  CAS  PubMed  Google Scholar 

  37. Roepstorff C, Thiele M, Hillig T, Pilegaard H, Richter EA, Wojtaszewski JF, et al. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol. 2006;574(Pt 1):125–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. O’Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, et al. AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci. 2011;108(38):16092–7.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Thomson DM, Porter BB, Tall JH, Kim HJ, Barrow JR, Winder WW. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am J Physiol Endocrinol Metab. 2007;292(1):E196–202.

    Article  CAS  PubMed  Google Scholar 

  40. Tanner CB, Madsen SR, Hallowell DM, Goring DM, Moore TM, Hardman SE, et al. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am J Physiol Endocrinol Metab. 2013;305(8):E1018–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Barre L, Richardson C, Hirshman MF, Brozinick J, Fiering S, Kemp BE, et al. Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation. Am J Physiol Endocrinol Metab. 2007;292(3):E802–11.

    Article  CAS  PubMed  Google Scholar 

  42. Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes. 2007;56(8):2062–9.

    Article  CAS  PubMed  Google Scholar 

  43. Scheffler TL, Scheffler JM, Park S, Kasten SC, Wu Y, McMillan RP, et al. Fiber hypertrophy and increased oxidative capacity can occur simultaneously in pig glycolytic skeletal muscle. Am J Physiol Cell Physiol. 2014;306(4):C354–63.

    Article  CAS  PubMed  Google Scholar 

  44. Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP, et al. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem. 2009;284(36):23925–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Frosig C, Jorgensen SB, Hardie DG, Richter EA, Wojtaszewski JF. 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(3):E411–7.

    Article  CAS  PubMed  Google Scholar 

  46. Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes. 2002;51(10):2886–94.

    Article  CAS  PubMed  Google Scholar 

  47. Nielsen JN, Mustard KJ, Graham DA, Yu H, MacDonald CS, Pilegaard H, et al. 5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol. 2003;94(2):631–41.

    Article  CAS  PubMed  Google Scholar 

  48. Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun. 2001;287(2):562–7.

    Article  CAS  PubMed  Google Scholar 

  49. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci. 2007;104(29):12017–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Rowe GC, Patten IS, Zsengeller ZK, El-Khoury R, Okutsu M, Bampoh S, et al. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep. 2013;3(5):1449–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol. 1999;87(5):1990–5.

    CAS  PubMed  Google Scholar 

  53. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol. 2000;88(6):2219–26.

    CAS  PubMed  Google Scholar 

  54. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11(6):554–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998;47(8):1369–73.

    CAS  PubMed  Google Scholar 

  56. Vincent MF, Marangos PJ, Gruber HE, Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991;40(10):1259–66.

    Article  CAS  PubMed  Google Scholar 

  57. Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF. 5-Aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R936–44.

    Article  CAS  PubMed  Google Scholar 

  58. Bullough DA, Zhang C, Montag A, Mullane KM, Young MA. Adenosine-mediated inhibition of platelet aggregation by acadesine. A novel antithrombotic mechanism in vitro and in vivo. J Clin Invest. 1994;94(4):1524–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002;51(8):2420–5.

    Article  CAS  PubMed  Google Scholar 

  60. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;15(348 Pt 3):607–14.

    Article  Google Scholar 

  61. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–8.

    Article  CAS  PubMed  Google Scholar 

  62. McGuire M, MacDermott M. The influence of streptozotocin diabetes and metformin on erythrocyte volume and on the membrane potential and the contractile characteristics of the extensor digitorum longus and soleus muscles in rats. Exp Physiol. 1999;84(6):1051–8.

    Article  CAS  PubMed  Google Scholar 

  63. Braun B, Eze P, Stephens BR, Hagobian TA, Sharoff CG, Chipkin SR, et al. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab. 2008;33(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  64. Johnson ST, Robert C, Bell GJ, Bell RC, Lewanczuk RZ, Boule NG. Acute effect of metformin on exercise capacity in active males. Diabetes Obes Metab. 2008;10(9):747–54.

    Article  CAS  PubMed  Google Scholar 

  65. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336(6083):918–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Roi GS, Garagiola U, Verza P, Spadari G, Radice D, Zecca L, et al. Aspirin does not affect exercise performance. Int J Sports Med. 1994;15(5):224–7.

    Article  CAS  PubMed  Google Scholar 

  67. de Gaetano G, Cerletti C, Dejana E, Latini R. Pharmacology of platelet inhibition in humans: implications of the salicylate-aspirin interaction. Circulation. 1985;72(6):1185–93.

    Article  PubMed  Google Scholar 

  68. Serizawa Y, Oshima R, Yoshida M, Sakon I, Kitani K, Goto A, et al. Salicylate acutely stimulates 5′-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles. Biochem Biophys Res Commun. 2014;453(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  69. LeBrasseur NK, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab. 2006;291(1):E175–81.

    Article  CAS  PubMed  Google Scholar 

  70. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes. 2004;53(4):1052–9.

    Article  CAS  PubMed  Google Scholar 

  71. Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh H, et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem. 2006;281(13):8748–55.

    Article  CAS  PubMed  Google Scholar 

  72. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.

    Article  CAS  PubMed  Google Scholar 

  73. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.

    Article  CAS  PubMed  Google Scholar 

  74. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9.

    Article  CAS  PubMed  Google Scholar 

  75. Sanchis-Gomar F, Pareja-Galeano H, Martinez-Bello VE. PPARgamma agonist pioglitazone does not enhance performance in mice. Drug Test Anal. 2014;6(9):922–9.

    Article  CAS  PubMed  Google Scholar 

  76. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care. 2005;28(12):2877–83.

    Article  CAS  PubMed  Google Scholar 

  77. Rencurel F, Stenhouse A, Hawley SA, Friedberg T, Hardie DG, Sutherland C, et al. AMP-activated protein kinase mediates phenobarbital induction of CYP2B gene expression in hepatocytes and a newly derived human hepatoma cell line. J Biol Chem. 2005;280(6):4367–73.

    Article  CAS  PubMed  Google Scholar 

  78. Rencurel F, Foretz M, Kaufmann MR, Stroka D, Looser R, Leclerc I, et al. Stimulation of AMP-activated protein kinase is essential for the induction of drug metabolizing enzymes by phenobarbital in human and mouse liver. Mol Pharmacol. 2006;70(6):1925–34.

    Article  CAS  PubMed  Google Scholar 

  79. Feng X, Luo Z, Ma L, Ma S, Yang D, Zhao Z, et al. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-delta/AMPK pathway. J Cell Mol Med. 2011;15(7):1572–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S. Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med. 2014;18(4):709–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Vazquez-Medina JP, Popovich I, Thorwald MA, Viscarra JA, Rodriguez R, Sonanez-Organis JG, et al. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats. Am J Physiol Heart Circ Physiol. 2013;305(4):H599–607.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ribeiro-Oliveira A, Jr, Marques MB, Vilas-Boas WW, Guimaraes J, Coimbra CC, Anjos AP, et al. The effects of chronic candesartan treatment on cardiac and hepatic adenosine monophosphate-activated protein kinase in rats submitted to surgical stress. JRAAS. 2013. doi:10.1177/1470320313499199

    PubMed  Google Scholar 

  83. Dayi SU, Akbulut T, Akgoz H, Terzi S, Sayar N, Aydin A, et al. Long-term combined therapy with losartan and an angiotensin-converting enzyme inhibitor improves functional capacity in patients with left ventricular dysfunction. Acta Cardiol. 2005;60(4):373–7.

    Article  PubMed  Google Scholar 

  84. De Rosa ML, Chiariello M. Candesartan improves maximal exercise capacity in hypertensives: results of a randomized placebo-controlled crossover trial. J Clin Hypertens. 2009;11(4):192–200.

    Article  CAS  Google Scholar 

  85. Takada S, Kinugawa S, Hirabayashi K, Suga T, Yokota T, Takahashi M, et al. Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice. J Appl Physiol. 2013;114(7):844–57.

    Article  CAS  PubMed  Google Scholar 

  86. Mattivi F. Solid phase extraction of trans-resveratrol from wines for HPLC analysis. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. 1993;196(6):522–5.

    Article  CAS  PubMed  Google Scholar 

  87. Zheng J, Ramirez VD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol. 2000;130(5):1115–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Hart N, Sarga L, Csende Z, Koch LG, Britton SL, Davies KJ, et al. Resveratrol attenuates exercise-induced adaptive responses in rats selectively bred for low running performance. Dose Response. 2014;12(1):57–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Olesen J, Gliemann L, Bienso R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592(Pt 8):1873–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Gliemann L, Olesen J, Bienso RS, Schmidt JF, Akerstrom T, Nyberg M, et al. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. Am J Physiol Heart Circ Physiol. 2014;307(8):H1111–9.

    Article  CAS  PubMed  Google Scholar 

  91. Gliemann L, Schmidt JF, Olesen J, Bienso RS, Peronard SL, Grandjean SU, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(Pt 20):5047–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Hart N, Sarga L, Csende Z, Koltai E, Koch LG, Britton SL, et al. Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food Chem Toxicol. 2013;61:53–9.

    Article  CAS  PubMed  Google Scholar 

  93. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22.

    Article  CAS  PubMed  Google Scholar 

  94. Dolinsky VW, Jones KE, Sidhu RS, Haykowsky M, Czubryt MP, Gordon T, et al. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. J Physiol. 2012;590(Pt 11):2783–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Louis XL, Thandapilly SJ, MohanKumar SK, Yu L, Taylor CG, Zahradka P, et al. Treatment with low-dose resveratrol reverses cardiac impairment in obese prone but not in obese resistant rats. J Nutr Biochem. 2012;23(9):1163–9.

    Article  CAS  PubMed  Google Scholar 

  96. Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring). 2007;15(6):1473–83.

    Article  CAS  PubMed  Google Scholar 

  97. Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T, Kimura I. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol. 2004;26(4):18.

    Article  CAS  Google Scholar 

  98. Maron DJ, Lu GP, Cai NS, Wu ZG, Li YH, Chen H, et al. Cholesterol-lowering effect of a the aflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med. 2003;163(12):1448–53.

    Article  CAS  PubMed  Google Scholar 

  99. Nakachi K, Matsuyama S, Miyake S, Suganuma M, Imai K. Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. BioFactors. 2000;13(1–4):49–54.

    Article  CAS  PubMed  Google Scholar 

  100. Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1550–6.

    Article  CAS  PubMed  Google Scholar 

  101. Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol. 2005;288(3):R708–15.

    Article  CAS  PubMed  Google Scholar 

  102. Dean S, Braakhuis A, Paton C. The effects of EGCG on fat oxidation and endurance performance in male cyclists. Int J Sport Nutr Exerc Metab. 2009;19(6):624–44.

    CAS  PubMed  Google Scholar 

  103. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun. 2005;338(2):694–9.

    Article  CAS  PubMed  Google Scholar 

  104. Kim SH, Hwang JT, Park HS, Kwon DY, Kim MS. Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem Biophys Res Commun. 2013;439(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  105. Lee GR, Jang SH, Kim CJ, Kim AR, Yoon DJ, Park NH, et al. Capsaicin suppresses the migration of cholangiocarcinoma cells by down-regulating matrix metalloproteinase-9 expression via the AMPK-NF-kappaB signaling pathway. Clin Exp Metastasis. 2014;31(8):897–907.

    Article  CAS  PubMed  Google Scholar 

  106. Luo Z, Ma L, Zhao Z, He H, Yang D, Feng X, et al. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1alpha upregulation in mice. Cell Res. 2012;22(3):551–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Eguchi T, Kumagai C, Fujihara T, Takemasa T, Ozawa T, Numata O. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4. PLoS One. 2013;8(7):e69480.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Tang X, Zhuang J, Chen J, Yu L, Hu L, Jiang H, et al. Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS One. 2011;6(8):e24224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Wu RM, Sun YY, Zhou TT, Zhu ZY, Zhuang JJ, Tang X, et al. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol Sin. 2014;35(10):1274–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Jeong HW, Cho SY, Kim S, Shin ES, Kim JM, Song MJ, et al. Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats. PLoS One. 2012;7(7):e40073.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Murase T, Misawa K, Haramizu S, Minegishi Y, Hase T. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am J Physiol Endocrinol Metab. 2010;299(2):E266–75.

    CAS  PubMed  Google Scholar 

  112. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3(6):403–16.

    Article  CAS  PubMed  Google Scholar 

  113. Scott JW, van Denderen BJ, Jorgensen SB, Honeyman JE, Steinberg GR, Oakhill JS, et al. Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. Chem Biol. 2008;15(11):1220–30.

    Article  CAS  PubMed  Google Scholar 

  114. Baltgalvis KA, White K, Li W, Claypool MD, Lang W, Alcantara R, et al. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice. Am J Physiol Heart Circ Physiol. 2014;306(8):H1128–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Jenkins Y, Sun TQ, Li Y, Markovtsov V, Uy G, Gross L, et al. Global metabolite profiling of mice with high-fat diet-induced obesity chronically treated with AMPK activators R118 or metformin reveals tissue-selective alterations in metabolic pathways. BMC Res Notes. 2014;7:674.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Viollet B, Andreelli F. AMP-activated protein kinase and metabolic control. Handb Exp Pharmacol. 2011;203:303–30.

    Article  CAS  PubMed  Google Scholar 

  117. Booth FW, Laye MJ. Lack of adequate appreciation of physical exercise’s complexities can pre-empt appropriate design and interpretation in scientific discovery. J Physiol. 2009;587(Pt 23):5527–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Carey AL, Kingwell BA. Novel pharmacological approaches to combat obesity and insulin resistance: targeting skeletal muscle with ‘exercise mimetics’. Diabetologia. 2009;52(10):2015–26.

    Article  CAS  PubMed  Google Scholar 

  119. Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev. 2012;11(3):390–8.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Rantzau C, Christopher M, Alford FP. Contrasting effects of exercise, AICAR, and increased fatty acid supply on in vivo and skeletal muscle glucose metabolism. J Appl Physiol. 2008;104(2):363–70.

    Article  CAS  PubMed  Google Scholar 

  121. Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, et al. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J. 2005;19(9):1146–8.

    PubMed  Google Scholar 

  122. Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J. 2014;28(2):548–68.

    Article  CAS  PubMed  Google Scholar 

  123. Ljubicic V, Jasmin BJ. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med. 2013;19(10):614–24.

    Article  CAS  PubMed  Google Scholar 

  124. Jahnke VE, Van Der Meulen JH, Johnston HK, Ghimbovschi S, Partridge T, Hoffman EP, et al. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model. Skelet Muscle. 2012;2(1):16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol. 2011;121(3):337–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. FASEB J. 2011;25(1):219–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Lim MA, Selak MA, Xiang Z, Krainc D, Neve RL, Kraemer BC, et al. Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease. J Neurosci. 2012;32(3):1123–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ‘Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE), Zentrum für Translationale Medizin und Pharmakologie’ and a grant from the Deutsche Forschungsgemeinschaft (DFG) to Ellen Niederberger (NI/705/3-3). The authors would like to thank Professor Michael Parnham for carefully reading and correcting the manuscript.

Gerd Geisslinger is an anti-doping expert of the Landessportbund Hessen, Frankfurt, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Niederberger.

Ethics declarations

Conflict of interest

Ellen Niederberger, Tanya S. King, Otto Q. Russe, and Gerd Geisslinger declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niederberger, E., King, T.S., Russe, O.Q. et al. Activation of AMPK and its Impact on Exercise Capacity. Sports Med 45, 1497–1509 (2015). https://doi.org/10.1007/s40279-015-0366-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0366-z

Keywords

Navigation