Skip to main content
Log in

Influence of Chitosan Microspheres on the Transport of Prednisolone Sodium Phosphate Across HT-29 Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The present study was performed to investigate the influence of chitosan microspheres on transport of the hydrophilic, antiinflammatory drug prednisolone sodium phosphate (PSP) across the epithelial barrier.

Methods. Microspheres were prepared using a precipitation method and loaded with PSP. Transport studies were performed in a diffusion cell chamber using the polarized human cell line HT-29B6. Porcine small intestine and fluorescence-labeled microspheres were used to investigate penetration ability of microspheres.

Results. It was shown that transport of PSP drug solution was not saturable across the cell monolayers (P = 8.68 ± 8.24 × 10−6 cm sec−1) and no sodium dependency could be established. EGTA treatment resulted in an increased permeability (P = 18.69 ± 1.09 × 10−6 cm sec−1). After binding of prednisolone to chitosan microspheres its permeability was enhanced drastically compared with the drug solution (P = 35.37 ± 3.21 ×10−6 cm sec−1). This effect was prevented by EGTA treatment (P = 15.11 ± 2.57 × 10−6 cm sec−1). Furthermore the supporting effect of chitosan microspheres was impaired by pH and ion composition of the medium, whereas the effect remained unchanged in cells treated with bacterial lipopolysaccharides. In vitro incubation of fluorescence-labeled microspheres in the lumen of freshly excised intestine revealed a significant amount of the spheres in the submucosa.

Conclusions. Chitosan microspheres are a useful tool to improve the uptake of hydrophilic substances like PSP across epithelial layers. The effect is dependent on the integrity of the intercellular cell contact zones and the microparticles are able to pass the epithelial layer. Their potential benefit under inflammatory conditions like in inflammatory bowel disease, in order to establish high drug doses at the region of interest, remains to be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. T. Dingle, J. L. Gordon, B. L. Hazleman, C. G. Knight, D. P. Page Thomas, N. C. Phillips, I. H. Shaw, F. J. T. Fildes, J. E. Oliver, G. Jones, E. H. Turner, and J. S. Lowe. Nature 271:372–373 (1978).

    Google Scholar 

  2. Y. Mizushima. Drugs Exptl. Clin. Res. 11:595–600 (1985).

    Google Scholar 

  3. L. Illum, J. Wright, and S. S. Davis. Int. J. Pharm. 52:221–224 (1989).

    Google Scholar 

  4. A. Berthold, K. Cremer, and J. Kreuter. J. Controlled Rel. 39:17–25 (1996).

    Google Scholar 

  5. S. Hirano, H. Seino, Y. Akiyama, and I. Nonaka. Polym. Eng. Sci. 59:897–901 (1988).

    Google Scholar 

  6. G. G. Allan, L. C. Altman, R. E. Bensinger, D. K. Ghosh, Y. Hirabayashi, A. N. Neogi, and S. Neogi. Biomedical applications of chitin and chitosan. In J. P. Zizakis (ed.), Chitin, Chitosan and Related Enzymes, Academic Press, Orlando, 1984, pp. 119–133.

    Google Scholar 

  7. Q. Li, E. T. Dunn, E. W. Grandmaison, and M. F. A. Goosen. J. Bioactive Compatible Polymers 7:370–397 (1992).

    Google Scholar 

  8. M. Hossain, W. Abramowitz, B. I. Watrous, G. J. Szpunar, and J. W. Ayres. Pharm. Res. 7:1163–1166 (1990).

    Google Scholar 

  9. J. Fogh and G. Trempe, New human tumor cell lines. In J. Fogh (ed.), Human Tumor Cells In Vitro, Plenum Press, New York, 1975, pp. 115–141.

    Google Scholar 

  10. P. Wils, S. Legrain, E. Frenois, and D. Scherman. Biochim. Biophys. Acta 1177:134–138 (1993).

    Google Scholar 

  11. J. A. Titus, R. Haugland, S. O. Sharrow, and D. M. Segal. J. Immunol. Methods 50:193–204 (1982).

    Google Scholar 

  12. T. J. Aspden, L. Illum, and Ø. Skaugrud. European J. Pharm. Sci. 4:23–31 (1996).

    Google Scholar 

  13. L. Illum, N. F. Farraj, and S. S. Davis. Pharm. Res. 11:1186–1189 (1994).

    Google Scholar 

  14. H. L. Lueßen, C. M. Lehr, C. O. Rentel, A. B. J. Noach, A. G. de Boer, J. C. Verhoef, and H. E. Junginger. J. Controlled Rel. 29:329–338 (1994).

    Google Scholar 

  15. G. H. Zhang, E. J. Cragoe, and J. E. Melvin. Am. J. Physiol. 264:C54–C62, 1993.

    Google Scholar 

  16. A. Tsuji, H. Takanaga, I. Tamai, and T. Terasaki. Pharm. Res. 11:30–37 (1994).

    Google Scholar 

  17. C. Eckmann, H. C. Jung, C. Schurer-Marly, A. Panja, E. Morcycka-Wroblews, and M. F. Kagnoff. Gastroenterology 105:1689–1697 (1993).

    Google Scholar 

  18. C. L. Wells, R. P. Jechorek, S. B. Olmsted, and S. L. Erlandsen. Circ. Shock 40:276–288 (1993).

    Google Scholar 

  19. P. Artursson and C. Magnusson. J. Pharm. Sci. 79:595–600 (1990).

    Google Scholar 

  20. H. N. Nellans. Adv. Drug Deliv. Rev. 7:339–364 (1991).

    Google Scholar 

  21. C. M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger. Int. J. Pharm. 78:43–48 (1992).

    Google Scholar 

  22. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Pharm. Res. 11:1358–1361 (1994).

    Google Scholar 

  23. J. L. Madara. Am. J. Physiol. 253:C171–C175 (1987).

    Google Scholar 

  24. S. M. Siegel and O. Daly. Plant Physiol. 41:1429–1434 (1966).

    Google Scholar 

  25. K. Ogawa, K. Oka, T. Miyanishi, and S. Hirano. X-ray diffraction study on chitosan-metal complexes. In J. P. Zizakis (ed.), Chitin, Chitosan and Related Enzymes, Academic Press, Orlando, 1984, pp. 327–346.

    Google Scholar 

  26. G. Volkheimer. Z. Gastroenterol. 14:57–64 (1964).

    Google Scholar 

  27. G. Peluso, O. Petillo, M. Ranieri, M. Santin, L. Ambrosio, D. Calabro, B. Avallone, and G. Balsamo. Biomaterials 15:1215–1220 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooren, F.C., Berthold, A., Domschke, W. et al. Influence of Chitosan Microspheres on the Transport of Prednisolone Sodium Phosphate Across HT-29 Cell Monolayers. Pharm Res 15, 58–65 (1998). https://doi.org/10.1023/A:1011996619500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011996619500

Navigation