Skip to main content
Log in

Accuracy of fractal dimension estimates for small samples of ecological distributions

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We carry out a simulation study of the estimation of fractal dimension in a grid-based setting typical of ecological species distributions, using null landscape models. We calculate the box-counting dimension for samples taken in various types of sampling geometry. Sampler geometries include simple blocks,Cantor grids and line transects. This method may be used to measure fractal dimension of a species distribution, but the accuracy depends on a number of criteria. The most important is sampling effort: any estimate will be inaccurate if the sampling effort is low. We also find the geometry of the sampler to be important. For a given sampling effort, schemes based on the Cantor grids performed better than either line transects or simple blocks. Sampling effort can be improved either by using a bigger sampler over a larger area or by repeated sampling of a smaller area: optimum performance is often a trade-off between these two mechanisms. However, performance is also highly sensitive to the type of fractal object being sampled, with certain types of object requiring a much greater effort for an accurate estimate of fractal dimension. These results raise the possibilities of using novel sampling techniques to estimate fractal dimension, when confronted with limited resources and time, but underline also the need for an understanding of the “type” of fractality expected in ecological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azovsky A.I. 2000. Concept of scale in marine ecology: linking the words or the worlds? Web Ecology 1: 28-34.

    Google Scholar 

  • Bellehumeur C. and Legendre P. 1998. Multiscale sources of variation in ecological variables: modeling spatial dispersion, elaborating sampling designs. Landsc. Ecol. 13: 15-25.

    Article  Google Scholar 

  • Berntson G.M. and Stoll P. 1997. Correcting for finite spatial scales of self-similarity when calculating the fractal dimensions of real world structures. In: Proceedings of the Royal Society London, series B 264., pp. 1531-1537.

    Article  Google Scholar 

  • Borgani S., Murante G., Provenzale A. and Valdarini R. 1993. Multifractal analysis of the galaxy distribution: Reliability of results from finite data sets. Phys. Rev. E47: 3879-3888.

    Google Scholar 

  • Buczkowski S., Hilden P. and Cartilier L. 1998. Measurements of fractal dimension be box counting: a critical analysis of data scatter. Physica A252: 23-34.

    Google Scholar 

  • Colasanti R.L. and Grime J.P. 1993. Resource Dynamics and Vegetation Process: a Deterministic Model Using Two-Dimensional Cellular Automata. Funct. Ecol. 7: 169-176.

    Article  Google Scholar 

  • Cutler C.D. 1993. A Review of the Theory and Estimation of Fractal Dimension. In: Tong H. (ed.), Nonlinear Time Series and Chaos, Dimension Estimation and Models. Vol. I. World Scientific, Singapore, pp. 1-107.

    Google Scholar 

  • Dale M.R. 1998. Spatial Pattern Analysis in Plant Ecology. Cambridge University Press, New York, New York, USA.

    Google Scholar 

  • Daley D.J. and Vere-Jones D. 1988. An Introduction to the Theory of Point Processes. Springer Verlag, New York, New York, USA.

    Google Scholar 

  • Drake J.B. and Weishampel J.F. 2000. Multifractal analysis of canopy height measures in a longleaf pine savanna. Forest Ecol. Management 128: 121-127.

    Article  Google Scholar 

  • Falconer K. 1990. Fractal Geometry. J. Wiley and sons, London, UK.

    Google Scholar 

  • Feder J. 1988. Fractals. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Gardner R.H. 1999. RULE: Map generation and a spatial pattern analysis program. In: Klopatek J.M. and Gardner R.H. (eds), Landscape Ecological Analysis Issues and Applications. Springer, New York, New York, USA, pp. 280-303.

    Google Scholar 

  • Gunnarsson B. 1992. Fractal dimension of plants and body size distribution in spiders. Funct. Ecol. 6: 636-641.

    Article  Google Scholar 

  • Hall P. and Wood A. 1993. On the performance of box counting estimators of fractal dimension. Biometrika 80: 246-252.

    Article  Google Scholar 

  • Halley J.M., Comins H.N., Lawton J.H. and Hassell M.P. 1994. Competition, Succession and Pattern in Fungal Communities-Towards a Cellular Automation Model. Oikos 70: 435-442.

    Google Scholar 

  • Hamburger D., Biham O. and Avnir D. 1996. Apparent Fractality Emerging from Models of Random Distributions. Phys. Rev. E53: 3342-3358.

    Google Scholar 

  • Hastings H.M. and Sugihara G. 1993. Fractals a User's Guide for the Natural Sciences. Oxford University Press, New York, New York, USA.

    Google Scholar 

  • He F.L. and Gaston K.J. 2000. Estimating species abundance from occurrence. Amer. Naturalist 156: 553-559.

    Article  Google Scholar 

  • Hentschel H.G.E. and Procaccia I. 1983. The infinite number of generalized dimensions of fractals and strange attractors. Physica D8: 435-444.

    Google Scholar 

  • Keitt T.H. 1997. Stability and complexity on a lattice: coexistence of species in an individual-based food web model. Ecol. Model. 102: 243-258.

    Article  Google Scholar 

  • Krummel J.R., Gardner R.H., Sugihara G., O'Neill R.V. and Coleman P.R. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321-324.

    Google Scholar 

  • Kunin W.E. 1998. Extrapolating Species Abundance Across Spatial Scales. Science 281: 1513-1515.

    Article  PubMed  CAS  Google Scholar 

  • Kunin W.E., Hartley S. and Lennon J.J. 2000. Scaling down: on the challenge of estimating abundance from occurrence patterns. Amer. Naturalist 156: 560-566.

    Article  Google Scholar 

  • Lavorel S., Gardner R.H. and O'Neill R.V. 1993. Analysis of patterns in hierarchically structured landscapes. Oikos 67: 521-528.

    Google Scholar 

  • Leduc A., Prairie Y.T. and Bergeron Y. 1994. Fractal dimension estimates of a fragmented landscape-sources of variability. Landsc. Ecol. 9: 279-286.

    Article  Google Scholar 

  • Li B.L. 2000. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol. Model. 132: 33-50.

    Article  Google Scholar 

  • Lin Y.X. and McCabe M. 1999. An example of applying the asymptotic quasi likelihood to dimension estimation for random spatial patterns. Journal of statistical planning and inference 80: 197-209.

    Article  Google Scholar 

  • Lobo A., Moloney K., Chic O. and Chiariello N. 1998. Analysis of fine scale spatial pattern of a grassland from remotely sensed imagery and field collected data. Landsc. Ecol. 13: 111-131.

    Article  Google Scholar 

  • Loehle C. and Li B.L. 1996. Statistical properties of ecological and geologic fractals. Ecol. Model. 85: 271-284.

    Article  Google Scholar 

  • Mandelbrot B.B. 1982. The Fractal Geometry of Nature. W.H. Freeman, San Francisco.

    Google Scholar 

  • Manly B.F.J. 1997. Randomization Bootstrap and Monte Carlo Methods in Biology. 2nd edn. Chapman and Hall, London, UK.

    Google Scholar 

  • McIntyre N.E. and Wiens J.A. 1999. Interactions between habitat abundance and configuration: experimental validation of some predictions from percolation theory. Oikos 86: 129-137.

    Google Scholar 

  • Milne B.T. 1992. Spatial aggregation and neutral models in fractal landscapes. Amer. Naturalist 139: 32-57.

    Article  Google Scholar 

  • Nikora V.I., Pearson C.P. and Shankar U. 1999. Scaling properties in landscape patterns: New Zealand experience. Landsc. Ecol. 14: 17-33.

    Article  Google Scholar 

  • Ogata Y. and Katsura K. 1991. Maximum-Likelihood-Estimates of the Fractal Dimension for Random Spatial Patterns. Biometrika 78: 463-474.

    Article  Google Scholar 

  • Oleshko K., Brambila F., Aceff F. and Mora L.P. 1998. From fractal analysis along a line to fractals on the plane. Soil Till. Res. 45: 389-406.

    Article  Google Scholar 

  • Palmer M.W. 1988. Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75: 91-102.

    Article  Google Scholar 

  • Palmer M.W. 1992. The coexistence of species in fractal landscapes. Amer. Naturalist 193: 375-397.

    Article  Google Scholar 

  • Peitgen H.O., Jurgens H. and Saupe D. 1992. Chaos and Fractals New Frontiers of Science. Springer Verlag, New York, New York, USA.

    Google Scholar 

  • Pickett S.T.A. and Cadenasso M.L. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269: 331-334.

    CAS  PubMed  Google Scholar 

  • Plotnick R.E., Gardner R.H., Hargrove W.W., Prestegaard K. and Perlmutter M. 1996. Lacunarity Analysis-A General Technique for the Analysis of Spatial Patterns. Phys. Rev. E53: 5461-5468.

    Google Scholar 

  • Ramsey J.B. and Yuan H.J. 1990. The statistical properties of dimension calculations using small data sets. Nonlinearity 3: 155-176.

    Article  Google Scholar 

  • Ricotta C. 2000. From theoretical ecology to statistical physics and back: self similar landscape metrics as a synthesis of ecological diversity and geometrical complexity. Ecol. Model. 125: 245-253.

    Article  Google Scholar 

  • Ritchie M.E. 1998. Scale dependent foraging and patch choice in fractal environments. Evol. Ecol. 12: 309-330.

    Article  Google Scholar 

  • Shorrocks B., Marsters J., Wars J. and Evennett P.J. 1991. The fractal dimension of lichens and the distribution of arthropod body lengths. Funct. Ecol. 5: 457-460.

    Article  Google Scholar 

  • Theiler J. 1990. Statistical Precision of dimension estimators. Phys. Rev. A41: 3038-3051.

    Google Scholar 

  • Tischendorf L. 2001. Can landscape indices predict ecological processes constantly? Landsc. Ecol. 16: 235-254.

    Article  Google Scholar 

  • Turcotte D.L. 1992. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Vere-Jones D., Davies R.B., Harte D., Mikosch T. and Wang Q. 1997. Problems and examples in the estimation of fractal dimesion from meteorological and earthquake data. In: Subba Rao T., Priestley M.B. and Lessi O. (eds), Applications of Time Series Analysis in Astronomy and Meteorology. Chapman and Hall, London, UK, pp. 359-375.

    Google Scholar 

  • Wallis J.R. and Matalas N.C. 1970. Small sample properties of H and K-Estimators of the Hurst Coefficient h. Water Resour. Res. 6: 1583-1594.

    Article  Google Scholar 

  • With K.A. and King A.W. 1998. Extinction thresholds for species in fractal landscapes. Conserv. Biol. 13: 314-326.

    Article  Google Scholar 

  • With K.A. and King A.W. 2001. Analysis of landscape sources and sinks: the effect of spatial pattern on avian demography. Biol. Conserv. 100: 75-88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallimanis, A.S., Sgardelis, S.P. & Halley, J.M. Accuracy of fractal dimension estimates for small samples of ecological distributions. Landscape Ecology 17, 281–297 (2002). https://doi.org/10.1023/A:1020285932506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020285932506

Navigation