Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal enrichment in bauxites by deposition of chemically mature aeolian dust

Abstract

Mass-balance equations applied to chemical analyses of a bauxite weathering profile in Western Australia show quantitatively that the ore-grade enrichment of aluminium is due to accumulation of aeolian dust derived elsewhere from chemically mature soils. This finding challenges the prevalent view of bauxite genesis by simple in situ residual enrichment and suggests that regional dust trajectories may serve as a genetic link between laterites, bauxites, heavy mineral beach sands, and clay-enriched marine sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Darwin, C. Q. geol. Soc. Land. 2, 26–30 (1846).

    Article  Google Scholar 

  2. Pye, K. Aeolian Dust and Dust Deposits (Academic, London, 1987).

    Google Scholar 

  3. Péwé, T. L., Péwé, E. A., Journaux, A. & Slatt, R. M. Spec Pap. geol. Soc. Am. 186, 169–190 (1981).

    Google Scholar 

  4. McTainsh, G. H. & Pitblado, J. R. Earth Surf. Process Landforms 12, 415–424 (1987).

    Article  ADS  Google Scholar 

  5. Coque, R. Ann. Geog. 64, 359–370 (1955).

    Article  Google Scholar 

  6. Goudie, A. S. Duricrusts (Clarendon, Oxford, 1973).

    Google Scholar 

  7. Watson, A. Sedimentology 32, 855–876 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Richthofen, F. von Geol. Mag. 9, 293–305 (1882).

    Article  ADS  Google Scholar 

  9. Goldberg, E. D. Comments Earth Sci Geophys. 1, 117–196 (1971).

    Google Scholar 

  10. Brimhall, G. H., Alpers, C. & Cunningham, A. B. Econ. Geol. 80, 1227–1254 (1985).

    Article  CAS  Google Scholar 

  11. Brimhall, G. H. & Dietrich, W. A. Geochim. cosmochim. Acta 51, 567–587 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Sadleir, S. B. & Gilkes, R. J. J. geol. Soc. Aust. 23, 333–344 (1976).

    Article  CAS  Google Scholar 

  13. Loughnan, F. C. & Sadleir, S. B. in Bauxite (ed. Jacob, L.) 436–450 (Am. Inst. Metallurg. Petrol. Engrs, New York, 1984).

    Google Scholar 

  14. Windom, H. L. J. Sedim. Petr. 45, 520–529 (1975).

    CAS  Google Scholar 

  15. Brookfield, M. Z. Geomorph. Suppl. 10, 121–158 (1970).

    Google Scholar 

  16. Hingston, F. & Gailitis, V. Aust. J. Soil Res. 14, 319–335 (1976).

    Article  CAS  Google Scholar 

  17. McKeague, J. A. in Soil Micromorphology (eds Bullock, P. & Murphy, C. P.) 369–371 (Academic, Berkhamsted, 1981).

    Google Scholar 

  18. Birkeland, P. W. Pedology, Weathering and Geomorphological Research, 146–147 (Oxford University Press, New York, 1974).

    Google Scholar 

  19. Brimhall, G. H. & Rivers, M. L. United States Patent 4, 503, 555 (1985).

    Google Scholar 

  20. Mann, A. W. in Geochemical Exploration in Deeply Weathered Terrain (ed. Smih, R. E.) 158–167 (CSIRO Inst Energy and Earth Resources, Wembley, 1983).

    Google Scholar 

  21. Vallance, T. G. Metamorphic Map of Australia (Bureau of Mineral Resources, Sydney, 1983).

    Google Scholar 

  22. Janardhan, A. S., Newton, R. C. & Hansen, E. C. Contr. Miner. Petr. 79, 130–149 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Vine, H. Tech. Commun. Commonwlth Bur. Soil Sci. 46, 22–29 (1949).

    Google Scholar 

  24. Tardy, Y. & Nahon, D. Am. J. Sci. 285, 865–903 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Nikiforoff, C. C. Soil Sci. 67, 219–230 (1949).

    Article  ADS  CAS  Google Scholar 

  26. Vadász, E. Bauxitföldtan (Akademiai Kiado, Budapest, 1951).

    Google Scholar 

  27. Valeton, I. Bauxites, 145–147 (Elsevier, Amsterdam, 1972).

    Google Scholar 

  28. Grubb, P. L. C. Econ. Geol. 66, 1005–1016 (1971).

    Article  CAS  Google Scholar 

  29. Baker, G. F. U. Bull. Bur. Miner. Resourc. Geol. Geophys. Aust. no. 141, 223–224 (1973).

    Google Scholar 

  30. Geidans, L. Australas, Inst. Min. Metall. Conf. Perth 3, 173–182 (1973).

    Google Scholar 

  31. Hutton, J. T. Divl Rep. Div. Soils CSIRO 11, 55–56 (1955).

    Google Scholar 

  32. Tomich, S. A. Proc. Australas. Inst. Min. Metall. 212, 125–135 (1965).

    Google Scholar 

  33. Valeton, I. in Lateritisation Processes (Proc. Int. Seminar on Lateritisation Processes) 15–23 (Balkem, Rotterdam, 1981).

    Google Scholar 

  34. Norton, S. A. Econ. Geol. 68, 353–361 (1973).

    Article  CAS  Google Scholar 

  35. Glassford, D. K. & Killigrew, L. P. Search 7, 394–396 (1976).

    Google Scholar 

  36. Davy, R. Geol. Surv. Western Aust., Report 8 (1979).

  37. Mann, A. W. Econ. Geol. 79, 38–49 (1984).

    Article  CAS  Google Scholar 

  38. Mann, A. W. & Ollier, C. D. Catena Suppl. 6, 152–157 (1985).

    Google Scholar 

  39. Webster, J. G. & Mann, A. W. J. Geochem. Explor. 22, 21–42 (1984).

    Article  CAS  Google Scholar 

  40. Fantel, R. J., Buckingham, D. A. & Sullivan, D. E. Informn Circ. U.S. Bur. Mines. 9061.

  41. Baxter, J. L. West Austr. Geol. Surv. Min. Resourc. Bull. 10 (1977).

  42. Baxter, J. L. in Australia: A World Source of Ilmenite, Rutile, Monazite and Zircon, 1–8 (Australian Institute of Mineral Metallurgy, Victoria, 1986).

    Google Scholar 

  43. Derry, D. R. World Atlas of Geology and Mineral Deposits (Mining Journal Books, London, 1980).

    Google Scholar 

  44. Dixon, C. J. Atlas of Economic Mineral Deposits (Cornell, Press, New York, 1979).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimhall, G., Lewis, C., Ague, J. et al. Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333, 819–824 (1988). https://doi.org/10.1038/333819a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333819a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing