Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilization of cooperative virulence by the expression of an avirulent phenotype

Abstract

Pathogens often infect hosts through collective actions: they secrete growth-promoting compounds or virulence factors, or evoke host reactions that fuel the colonization of the host. Such behaviours are vulnerable to the rise of mutants that benefit from the collective action without contributing to it; how these behaviours can be evolutionarily stable is not well understood1. We address this question using the intestinal pathogen Salmonella enterica serovar Typhimurium (hereafter termed S. typhimurium), which manipulates its host to induce inflammation, and thereby outcompetes the commensal microbiota2,3. Notably, the virulence factors needed for host manipulation are expressed in a bistable fashion, leading to a slow-growing subpopulation that expresses virulence genes, and a fast-growing subpopulation that is phenotypically avirulent4,5. Here we show that the expression of the genetically identical but phenotypically avirulent subpopulation is essential for the evolutionary stability of virulence in this pathogen. Using a combination of mathematical modelling, experimental evolution and competition experiments we found that within-host evolution leads to the emergence of mutants that are genetically avirulent and fast-growing. These mutants are defectors that exploit inflammation without contributing to it. In infection experiments initiated with wild-type S. typhimurium, defectors increase only slowly in frequency. In a genetically modified S. typhimurium strain in which the phenotypically avirulent subpopulation is reduced in size, defectors rise more rapidly, inflammation ceases prematurely, and S. typhimurium is quickly cleared from the gut. Our results establish that host manipulation by S. typhimurium is a cooperative trait that is vulnerable to the rise of avirulent defectors; the expression of a phenotypically avirulent subpopulation that grows as fast as defectors slows down this process, and thereby promotes the evolutionary stability of virulence. This points to a key role of bistable virulence gene expression in stabilizing cooperative virulence and may lead the way to new approaches for controlling pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mathematical modelling predicts that within-host evolution leads to decreased virulence in S. typhimurium infections.
Figure 2: Infection experiments confirm that avirulent mutants rise during within-host evolution of S. typhimurium*.
Figure 3: S. typhimurium* virulence is a cooperative trait, and avirulent mutants are defectors that exploit host inflammation without contributing to it.
Figure 4: The phenotypically avirulent T1 population slows down the rise of avirulent defectors, and thus stabilizes cooperative virulence.

Similar content being viewed by others

References

  1. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol. 4, 597–607 (2006)

    Article  CAS  Google Scholar 

  2. Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, e244 (2007)

    Article  Google Scholar 

  3. Kaiser, P., Diard, M., Stecher, B. & Hardt, W. D. The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response. Immunol. Rev. 245, 56–83 (2012)

    Article  CAS  Google Scholar 

  4. Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008)

    Article  CAS  ADS  Google Scholar 

  5. Sturm, A. et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011)

    Article  CAS  Google Scholar 

  6. Casadevall, A. & Pirofski, L. A. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67, 3703–3713 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van Baalen, M. & Sabelis, M. W. The dynamics of multiple infection and the evolution of virulence. Am. Nat. 146, 881–910 (1995)

    Article  Google Scholar 

  8. Lysenko, E. S., Lijek, R. S., Brown, S. P. & Weiser, J. N. Within-host competition drives selection for the capsule virulence determinant of Streptococcus pneumoniae . Curr. Biol. 20, 1222–1226 (2010)

    Article  CAS  Google Scholar 

  9. Brown, S. P. Cooperation and conflict in host-manipulating parasites. Proc. R. Soc. Lond. B 266, 1899–1904 (1999)

    Article  Google Scholar 

  10. Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does multiple infection select for raised virulence? Trends Microbiol. 10, 401–405 (2002)

    Article  CAS  Google Scholar 

  11. Buckling, A. & Brockhurst, M. A. Kin selection and the evolution of virulence. Heredity 100, 484–488 (2008)

    Article  CAS  Google Scholar 

  12. Harrison, F., Browning, L. E., Vos, M. & Buckling, A. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol. 4, 21 (2006)

    Article  Google Scholar 

  13. Köhler, T., Buckling, A. & van Delden, C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc. Natl Acad. Sci. USA 106, 6339–6344 (2009)

    Article  ADS  Google Scholar 

  14. Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009)

    Article  CAS  Google Scholar 

  15. Raymond, B., West, S. A., Griffin, A. S. & Bonsall, M. B. The dynamics of cooperative bacterial virulence in the field. Science 337, 85–88 (2012)

    Article  CAS  ADS  Google Scholar 

  16. Brown, S. P., Le Chat, L. & Taddei, F. Evolution of virulence: triggering host inflammation allows invading pathogens to exclude competitors. Ecol. Lett. 11, 44–51 (2008)

    PubMed  PubMed Central  Google Scholar 

  17. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010)

    Article  Google Scholar 

  18. Suar, M. et al. Accelerated type III secretion system 2-dependent enteropathogenesis by a Salmonella enterica serovar enteritidis PT4/6 strain. Infect. Immun. 77, 3569–3577 (2009)

    Article  CAS  Google Scholar 

  19. Golubeva, Y. A., Sadik, A. Y., Ellermeier, J. R. & Slauch, J. M. Integrating global regulatory input into the Salmonella pathogenicity island 1 type III secretion system. Genetics 190, 79–90 (2012)

    Article  CAS  Google Scholar 

  20. Baxter, M. A., Fahlen, T. F., Wilson, R. L. & Jones, B. D. HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect. Immun. 71, 1295–1305 (2003)

    Article  CAS  Google Scholar 

  21. Cremer, J., Melbinger, A. & Frey, E. Growth dynamics and the evolution of cooperation in microbial populations. Sci. Rep. 2, 281 (2012)

    Article  ADS  Google Scholar 

  22. Lawley, T. D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76, 403–416 (2008)

    Article  CAS  Google Scholar 

  23. Bush, K. et al. Tackling antibiotic resistance. Nature Rev. Microbiol. 9, 894–896 (2011)

    Article  CAS  Google Scholar 

  24. R Devlopment Core Team. A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2010)

  25. Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: Package deSolve. J. Stat. Softw. 33, 1–25 (2010)

    Google Scholar 

  26. Hoiseth, S. K. & Stocker, B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239 (1981)

    Article  CAS  ADS  Google Scholar 

  27. Kaniga, K., Bossio, J. C. & Galan, J. E. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol. Microbiol. 13, 555–568 (1994)

    Article  CAS  Google Scholar 

  28. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  CAS  ADS  Google Scholar 

  29. Santiviago, C. A. et al. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog. 5, e1000477 (2009)

    Article  Google Scholar 

  30. Browne, S. H., Hasegawa, P., Okamoto, S., Fierer, J. & Guiney, D. G. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice. FEMS Immunol. Med. Microbiol. 52, 194–201 (2008)

    Article  CAS  Google Scholar 

  31. Hensel, M. et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30, 163–174 (1998)

    Article  CAS  MathSciNet  Google Scholar 

  32. Suar, M. et al. Accelerated type III secretion system 2-dependent enteropathogenesis by a Salmonella enterica serovar enteritidis PT4/6 strain. Infect. Immun. 77, 3569–3577 (2009)

    Article  CAS  Google Scholar 

  33. Schechter, L. M. & Lee, C. A. AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol. Microbiol. 40, 1289–1299 (2001)

    Article  CAS  Google Scholar 

  34. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995)

    Article  CAS  Google Scholar 

  35. Sturm, A. et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011)

    Article  CAS  Google Scholar 

  36. Stecher, B. et al. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 4138–4150 (2004)

    Article  CAS  Google Scholar 

  37. Hautefort, I., Proenca, M. J. & Hinton, J. C. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Microbiol. 69, 7480–7491 (2003)

    Article  CAS  Google Scholar 

  38. Gil, D. & Bouche, J. P. ColE1-type vectors with fully repressible replication. Gene 105, 17–22 (1991)

    Article  CAS  Google Scholar 

  39. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhoea. PLoS Pathog. 6, e1001097 (2010)

    Article  Google Scholar 

  40. Nordentoft, S., Christensen, H. & Wegener, H. C. Evaluation of a fluorescence-labelled oligonucleotide probe targeting 23S rRNA for in situ detection of Salmonella serovars in paraffin-embedded tissue sections and their rapid identification in bacterial smears. J. Clin. Microbiol. 35, 2642–2648 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012)

    Article  CAS  Google Scholar 

  42. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003)

    Article  CAS  Google Scholar 

  43. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Slack, R. Kümmerli, M. Sellin and L. Robert for comments on the manuscript, G. Paul for input on the modelling, and Hardt laboratory members for discussions. M.D. was supported in part by the Fondation pour la Recherche Médicale. M.A., R.R.R. and W.-D.H. were supported by grants from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.D., V.G. and R.R.R. conceived and analysed the mathematical simulations. M.D., V.G. and R.R.R. wrote the theoretical part of the paper. M.D., W.-D.H., L.M. (Supplementary Figs 14 and 20), M.N.P.R.-E (Supplementary Fig. 8) and M.A. designed the experiments and analysed the data. M.D., W.-D.H. and M.A. wrote the paper. M.D. and L.M. (Supplementary Figs 14 and 20) performed the experiments.

Corresponding authors

Correspondence to Roland R. Regoes, Martin Ackermann or Wolf-Dietrich Hardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Text and Data, Supplementary Table 1, Supplementary Figures 1-20 and Supplementary References. (PDF 1368 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diard, M., Garcia, V., Maier, L. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013). https://doi.org/10.1038/nature11913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11913

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology