Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abrupt glacial climate shifts controlled by ice sheet changes

Abstract

During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard–Oeschger (DO) events1. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (bp) in the ice core record2, and has drawn broad attention within the science and policy-making communities alike3. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified3,4,5,6,7,8,9,10,11,12,13,14,15. Here we show, by using a comprehensive fully coupled model16, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere–ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses—including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw—are generally consistent with empirical evidence1,3,17. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere–ocean–sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere–ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient simulations with gradually increasing NHIS height (ISTran45) and CO2 level (TrGHG04).
Figure 2: Ocean circulation and internal SAT variability under cold and warm climate states in experiment ISTran45.
Figure 3: AMOC hysteresis with respect to changes in NHIS height and its relationship to recorded abrupt climate variability.
Figure 4: Annual mean anomaly maps between strong and weak AMOC modes.

Similar content being viewed by others

References

  1. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993)

    Article  ADS  Google Scholar 

  2. Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013)

  4. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wunsch, C. Abrupt climate change: an alternative view. Quat. Res. 65, 191–203 (2006)

    Article  ADS  Google Scholar 

  8. Knorr, G. & Lohmann, G. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosyst. 8, Q12006 (2007)

    Article  ADS  Google Scholar 

  9. Dima, M. & Lohmann, G. Conceptual model for millennial climate variability: a possible combined solar–thermohaline circulation origin for the 1,500-year cycle. Clim. Dyn. 32, 301–311 (2008)

    Article  Google Scholar 

  10. Kwasniok, F. & Lohmann, G. Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability. Phys. Rev. E 80, 066104 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Arzel, O., Colin de Verdière, A. & England, M. H. The role of oceanic heat transport and wind stress forcing in abrupt millennial-scale climate transitions. J. Clim. 23, 2233–2256 (2010)

    Article  ADS  Google Scholar 

  12. Li, C., Battisti, D. S. & Bitz, C. M. Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Clim. 23, 5457–5475 (2010)

    Article  ADS  Google Scholar 

  13. Banderas, R., Alvarez-Solas, J. & Montoya, M. Role of CO2 and Southern Ocean winds in glacial abrupt climate change. Clim. Past 8, 1011–1021 (2012)

    Article  Google Scholar 

  14. Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S. & Kissel, C. Dansgaard–Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28, 491–502 (2013)

    Article  ADS  Google Scholar 

  15. Petersen, S. V., Schrag, D. P. & Clark, P. U. A new mechanism for Dansgaard–Oeschger cycles. Paleoceanography 28, 24–30 (2013)

    Article  ADS  Google Scholar 

  16. Zhang, X., Lohmann, G., Knorr, G. & Xu, X. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past 9, 2319–2333 (2013)

    Article  Google Scholar 

  17. Voelker, A. H. L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1212 (2002)

    Article  ADS  Google Scholar 

  18. Schulz, M., Berger, W. H., Sarnthein, M. & Grootes, P. M. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys. Res. Lett. 26, 3385–3388 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Rasmussen, T. L. & Thomsen, E. The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 210, 101–116 (2004)

    Article  Google Scholar 

  20. Kim, J.-H. et al. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard–Oeschger interstadials. Earth Planet. Sci. Lett. 339–340, 95–102 (2012)

    Article  ADS  CAS  Google Scholar 

  21. Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. Marine Isotope Stage 3 sea level fluctuations: data synthesis and new outlook. Rev. Geophys. 46, RG000226 (2008)

    Article  Google Scholar 

  22. Peck, V. L., Hall, I. R., Zahn, R. & Scourse, J. D. Progressive reduction in NE Atlantic intermediate water ventilation prior to Heinrich events: response to NW European ice sheet instabilities? Geochem. Geophys. Geosyst. 8, Q01N10 (2007)

    Article  CAS  Google Scholar 

  23. Ahn, J. & Brook, E. J. Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 83, 83–85 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Barker, S. & Knorr, G. Antarctic climate signature in the Greenland ice core record. Proc. Natl Acad. Sci. USA 104, 17278–17282 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Arz, H. W., Lamy, F., Ganopolski, A., Nowaczyk, N. & Pätzold, J. Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat. Sci. Rev. 26, 312–321 (2007)

    Article  ADS  Google Scholar 

  27. Peck, V. L., Hall, I. R., Zahn, R. & Elderfield, H. Millennial-scale surface and subsurface paleothermometry from the northeast Atlantic, 55–8 ka bp. Paleoceanography 23, 1–11 (2008)

    Article  Google Scholar 

  28. Jonkers, L. et al. A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events. Quat. Sci. Rev. 29, 1791–1800 (2010)

    Article  ADS  Google Scholar 

  29. Waelbroeck, C. et al. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci. 2, 127–132 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Macayeal, D. R. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8, 775–784 (1993)

    Article  ADS  Google Scholar 

  31. Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM5. Part 1. Model Description (Max-Planck-Institut für Meteorologie report no. 349, 2003)

  32. Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, 1–5 (2009)

    Article  Google Scholar 

  33. Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. & Röske, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5, 91–127 (2003)

    Article  ADS  Google Scholar 

  34. Hibler, W., III A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846 (1979)

    Article  ADS  Google Scholar 

  35. Jungclaus, J. H. et al. Climate and carbon-cycle variability over the last millennium. Clim. Past 6, 723–737 (2010)

    Article  Google Scholar 

  36. Knorr, G., Butzin, M., Micheels, A. & Lohmann, G. A warm Miocene climate at low atmospheric CO2 levels. Geophys. Res. Lett. 38, 1–5 (2011)

    Article  CAS  Google Scholar 

  37. Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geosci. 7, 2–7 (2014)

    Article  CAS  Google Scholar 

  38. Stepanek, C. & Lohmann, G. Modelling mid-Pliocene climate with COSMOS. Geosci. Model Dev. 5, 1221–1243 (2012)

    Article  ADS  Google Scholar 

  39. Wei, W., Lohmann, G. & Dima, M. Distinct modes of internal variability in the Global Meridional Overturning Circulation associated with the Southern Hemisphere westerly winds. J. Phys. Oceanogr. 42, 785–801 (2012)

    Article  ADS  Google Scholar 

  40. Wei, W. & Lohmann, G. Simulated Atlantic multidecadal oscillation during the Holocene. J. Clim. 25, 6989–7022 (2012)

    Article  ADS  Google Scholar 

  41. Grootes, P. M., Stulver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993)

    Article  ADS  CAS  Google Scholar 

  42. Huber, C. et al. Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett. 243, 504–519 (2006)

    Article  ADS  CAS  Google Scholar 

  43. Rasmussen, T. L. & Thomsen, E. Warm Atlantic surface water inflow to the Nordic seas 34–10 calibrated ka B.P. Paleoceanography 23, PA1201 (2008)

    Article  ADS  Google Scholar 

  44. Rasmussen, T. & Thomsen, E. Circulation changes in the Faeroe–Shetland Channel correlating with cold events during the last glacial period (58–10 ka). Geology 24, 937–940 (1996)

    Article  ADS  CAS  Google Scholar 

  45. Rasmussen, T., Thomsen, E., Troelstra, S. R., Kuijpers, A. & Prins, M. a. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60000 years. Mar. Micropaleontol. 47, 143–176 (2002)

    Article  ADS  Google Scholar 

  46. Rasmussen, T. L. et al. The Faroe–Shetland Gateway: Late Quaternary water mass exchange between the Nordic seas and the northeastern Atlantic. Mar. Geol. 188, 165–192 (2002)

    Article  ADS  CAS  Google Scholar 

  47. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Kandiano, E. S., Bauch, H. A. & Müller, A. Sea surface temperature variability in the North Atlantic during the last two glacial–interglacial cycles: comparison of faunal, oxygen isotopic, and Mg/Ca-derived records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204, 145–164 (2004)

    Article  Google Scholar 

  49. Kiefer, T., Sarnthein, M., Erlenkeuser, H., Grootes, P. M. & Roberts, A. P. North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography 16, 179–189 (2001)

    Article  ADS  Google Scholar 

  50. Harada, N. et al. Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Global Planet. Change 53, 29–46 (2006)

    Article  ADS  Google Scholar 

  51. Naafs, B. D. A., Hefter, J., Grützner, J. & Stein, R. Warming of surface waters in the mid-latitude North Atlantic during Heinrich events. Paleoceanography 28, 153–163 (2013)

    Article  ADS  Google Scholar 

  52. Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Cacho, I., Grimalt, J. & Pelejero, C. Dansgaard–Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14, 698–705 (1999)

    Article  ADS  Google Scholar 

  54. Hendy, I. & Kennett, J. Dansgaard–Oeschger cycles and the California current system: planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography 15, 30–42 (2000)

    Article  ADS  Google Scholar 

  55. Sachs, J. P. & Lehmann, S. J. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286, 756–759 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. Simon, M. H. et al. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway. Earth Planet. Sci. Lett. 383, 101–112 (2013)

    Article  ADS  CAS  Google Scholar 

  57. Lamy, F. et al. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340000 year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301, 948–952 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Caniupán, M. et al. Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53°S) over the past 60 kyr. Paleoceanography 26, PA3221 (2011)

    Article  ADS  Google Scholar 

  60. Barbante, C. et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006)

    Article  ADS  CAS  Google Scholar 

  61. Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Van Meerbeeck, C. J. et al. The nature of MIS 3 stadial–interstadial transitions in Europe: new insights from model–data comparisons. Quat. Sci. Rev. 30, 3618–3637 (2011)

    Article  ADS  Google Scholar 

  64. Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011)

    Article  ADS  Google Scholar 

  65. Asmerom, Y., Polyak, V. J. & Burns, S. J. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature Geosci. 3, 114–117 (2010)

    Article  ADS  CAS  Google Scholar 

  66. Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003)

    Article  ADS  CAS  Google Scholar 

  68. Grimm, E. C. et al. Evidence for warm wet Heinrich events in Florida. Quat. Sci. Rev. 25, 2197–2211 (2006)

    Article  ADS  Google Scholar 

  69. Yuan, D. et al. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, 575–578 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 23–25 (1998)

    Article  CAS  Google Scholar 

  71. Altabet, M., Higginson, M. & Murray, D. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 . Nature 764, 159–162 (2002)

    Article  ADS  Google Scholar 

  72. Hodell, D. a. et al. An 85-ka record of climate change in lowland Central America. Quat. Sci. Rev. 27, 1152–1165 (2008)

    Article  ADS  Google Scholar 

  73. Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. & Al-Subbary, A. A. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 1365–1367 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Peterson, L. C., Haug, G. H., Hughen, K. A. & Roehl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Jennerjahn, T. C. et al. Asynchronous terrestrial and marine signals of climate change during Heinrich events. Science 306, 2236–2239 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740–743 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the Last Glacial. Science 335, 570–573 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Turney, C., Kershaw, A. & Clemens, S. Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428, 306–310 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Baker, P. A. et al. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698–701 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D. & Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet. Sci. Lett. 248, 495–507 (2006)

    Article  ADS  CAS  Google Scholar 

  81. Wang, X. et al. Interhemispheric anti-phasing of rainfall during the last glacial period. Quat. Sci. Rev. 25, 3391–3403 (2006)

    Article  ADS  Google Scholar 

  82. Cruz, F. W., Jr et al. Insolation-driven changes in atmospheric circulation over the last 116,000 years in subtropical Brazil. Nature 434, 63–66 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Ziegler, M. et al. Development of Middle Stone Age innovation linked to rapid climate change. Nature Commun. 4, 1905 (2013)

    Article  ADS  CAS  Google Scholar 

  84. Kissel, C., Laj, C., Labeyrie, L. & Dokken, T. Rapid climatic variations during marine isotopic stage 3: magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth Planet. Sci. Lett. 171, 489–502 (1999)

    Article  ADS  CAS  Google Scholar 

  85. Elliot, M., Labeyrie, L. & Duplessy, J. Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quat. Sci. Rev. 21, 1153–1165 (2002)

    Article  ADS  Google Scholar 

  86. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1–9 (2003)

    Article  Google Scholar 

  87. Zahn, R., Schönfeld, J. & Kudrass, H. Thermohaline instability in the North Atlantic during meltwater events: stable isotope and ice-rafted detritus records from core SO75-26KL, Portuguese margin. Paleoceanography 12, 696–710 (1997)

    Article  ADS  Google Scholar 

  88. Hemming, S. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004)

    Article  ADS  Google Scholar 

  89. Roche, D., Paillard, D. & Cortijo, E. Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature 432, 379–382 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006)

    Article  ADS  Google Scholar 

  91. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerod warming. Science 325, 310–314 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Menviel, L., Timmermann, A., Timm, O. E. & Mouchet, A. Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings. Quat. Sci. Rev. 30, 1155–1172 (2011)

    Article  ADS  Google Scholar 

  93. Roberts, W. H. G., Valdes, P. J. & Payne, A. J. A new constraint on the size of Heinrich Events from an iceberg/sediment model. Earth Planet. Sci. Lett. 386, 1–9 (2014)

    Article  ADS  CAS  Google Scholar 

  94. Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005)

    Article  ADS  Google Scholar 

  95. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Schmittner, A., Yoshimori, M. & Weaver, A. J. Instability of glacial climate in a model of the ocean–atmosphere–cryosphere system. Science 295, 1489–1493 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Bethke, I., Li, C. & Nisancioglu, K. H. Can we use ice sheet reconstructions to constrain meltwater for deglacial simulations? Paleoceanography 27, PA2205 (2012)

    Article  ADS  Google Scholar 

  98. Broecker, W. Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci. Rev. 51, 137–154 (2000)

    Article  ADS  Google Scholar 

  99. Gildor, H. & Tziperman, E. Sea-ice switches and abrupt climate change. Phil. Trans. R. Soc. A 361, 1935–1944 (2003)

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the colleagues in the Paleoclimate Dynamics group at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) in Bremerhaven for useful discussions, and I. Hall for comments on a previous draft of the manuscript. G.K. acknowledges helpful discussion with S. Barker. We thank the AWI colleagues who provide technical support on graphics and keep the AWI supercomputer running. This study is promoted by Helmholtz funding through the Polar Regions and Coasts in the Changing Earth System (PACES) programme of the AWI. Funding by ‘Helmholtz Climate Initiative REKLIM’ (Regional Climate Change), a joint research project of the Helmholtz Association of German research centres (HGF), is gratefully acknowledged (G.K.).

Author information

Authors and Affiliations

Authors

Contributions

X.Z., G.L. and G.K. developed the research and designed the experiments. X.Z. conducted the model simulations and analysed the data. X.Z., G.L. and G.K. interpreted the results. X.Z. led the write-up of the manuscript with significant contribution by C.P. and the other authors. All authors discussed the results and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Xu Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Topography information used in this study.

a, NHIS topography anomaly between LGM (Hsf = 1) and PD/NHIS_0.0 (Hsf = 0). bd, topography in NHIS_0.0 (b), NHIS_0.4 (c) and LGMctl (d). The ice-sheet imposed in LGMctl is derived from the PIMP3 protocol (https://pmip3.lsce.ipsl.fr/). The NHIS height anomaly between LGM (Hsf = 1) and PD (Hsf = 0) contributes to an equivalent change in sea level of 92 m.

Extended Data Figure 2 Spatial patterns of AMOC in different NHIS scenarios.

ai, Climatology AMOC patterns in experiments LGMctl (a), NHIS_0.6 (b), NHIS_0.5 (c), NHIS_0.4 (d), NHIS_0.2 (e), NHIS_0.0 (f), FIS_0.4 (g), LrtdIS_0.4 (h) and L04_hsol (i), as also described in Extended Data Table 1. j, Climatology AMOC pattern in the pre-industrial control run in COSMOS16.

Extended Data Figure 3 Characteristics of internal SAT variability under cold and warm climates in ISTran45.

a, c, e, Time series of SAT index in northern North Atlantic (average in 56°–65° N, 5°–30° W) (a) and composite maps of SIC and SAT anomalies in warming (c) and cooling (e) cases in the cold climate of ISTran45 (model year −200 to 0). b, d, f, As a, c and e respectively for the warm climate (the model year 110–250). Dashed lines in a and b represent ±1σ of the SAT indices. The warming and cooling cases are respectively defined as above and below 1 s.d.

Extended Data Figure 4 Characteristics of SIC under cold and warm climates in ISTran45.

a, c, Climatology SIC annual mean (a) and SIC variability (c) in the cold climate of ISTran45. b, d, As a and c respectively for the warm climate. The cold and warm climates are defined as the model year −200 to 0 and 110–250 of ISTran45 respectively, as also shown in Extended Data Fig. 3a, b.

Extended Data Figure 5 Atmosphere and ocean responses to changes in NHIS height.

a, Zonal wind stress along 100°–35° W. b, Wind stress curl over the North Atlantic Ocean. c, Anomalies in SIC (shaded) and sea ice transport (SI transport, vector). d, Absolute (NHIS_0.4s, shaded) and anomalous (contour) values of horizontal barotropic stream function. e, Mixed-layer depth anomaly (shaded) and absolute values for 15% (dashed) and 90% (solid) SIC in LGMctl (red line) and NHIS_0.4s (blue line). It can be seen that the core of northern westerlies shifts northwards gradually as the NHIS height increases, meanwhile strengthening wind stress curl over the North Atlantic basin. This indicates a linear response of wind circulation to the NHIS variations. Under identical NHIS configurations (NHIS_0.4w and NHIS_0.4s), the wind stress curl can also be enhanced as a consequence of wind system changes occurring in response to the atmosphere–ocean–sea-ice feedback in the northern North Atlantic.

Extended Data Figure 6 Simulated annual mean precipitation anomaly between the strong and weak AMOC modes with superimposed precipitation records.

The strong (weak) mode is defined as the ensemble mean of NHIS_0.45, NHIS_0.4s, NHIS_0.35s and NHIS_0.3s (NHIS_0.4, NHIS_0.35w, NHIS_0.3w and NHIS_0.25) AMOC modes. Green and red dots indicate humid and arid conditions, respectively, during DO warmings, as also shown in Extended Data Table 3.

Extended Data Figure 7 AMOC indices in the hosing experiments.

a, c, 0.02 Sv saltwater hosing experiments in the North Atlantic at fixed intermediate ice-sheet height of 0.25 (a) and 0.4 Hsf (c). b, d, 0.02 Sv freshwater hosing experiments at Hsf = 0.3 (b) and Hsf = 0.45 (d). The vertical dashed lines indicate the ending time of the freshwater/saltwater perturbation. pFWP and nFWP indicate 0.02 Sv freshwater and saltwater, respectively, imposed in the North Atlantic region of 50–65° N and 5°–30° W. It is noted that NHIS_0.4 nfwp and NHIS_0.3s pfwp are within the range of the bistable regime with respect to NHIS height, whereas the others lie outside.

Extended Data Table 1 Model simulations in this study
Extended Data Table 2 Temperature proxy data used for model–data comparison
Extended Data Table 3 Information on 22 precipitation proxy records covering the period when the ice-sheet height is at varying intermediate levels (that is, MIS3)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lohmann, G., Knorr, G. et al. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512, 290–294 (2014). https://doi.org/10.1038/nature13592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13592

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing