Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity

Abstract

Oxygen accumulated in the surface waters of the Earth’s oceans1 and atmosphere2 several hundred million years before the Great Oxidation Event between 2.4 and 2.3 billion years ago3. Before the Great Oxidation Event, periods of enhanced submarine volcanism associated with mantle plume events4 supplied Fe(II) to sea water. These periods generally coincide with the disappearance of indicators of the presence of molecular oxygen in Archaean sedimentary records5. The presence of Fe(II) in the water column can lead to oxidative stress in some organisms as a result of reactions between Fe(II) and oxygen that produce reactive oxygen species6. Here we test the hypothesis that the upwelling of Fe(II)-rich, anoxic water into the photic zone during the late Archaean subjected oxygenic phototrophic bacteria to Fe(II) toxicity. In laboratory experiments, we found that supplying Fe(II) to the anoxic growth medium housing a common species of planktonic cyanobacteria decreased both the efficiency of oxygenic photosynthesis and their growth rates. We suggest that this occurs because of increasing intracellular concentrations of reactive oxygen species. We use geochemical modelling to show that Fe(II) toxicity in conditions found in the late Archaean photic zone could have substantially inhibited water column oxygen production, thus decreasing fluxes of oxygen to the atmosphere. We therefore propose that the timing of atmospheric oxygenation was controlled by the timing of submarine, plume-type volcanism, with Fe(II) toxicity as the modulating factor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence for Fe(II) toxicity in Synechococcus PCC 7002.
Figure 2: Model of oxygen production modulated by Fe(II) toxicity.

Similar content being viewed by others

References

  1. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geosci. 7, 283–286 (2014).

    Article  Google Scholar 

  2. Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

    Article  Google Scholar 

  3. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    Article  Google Scholar 

  4. Barley, M. E., Pickard, A. L. & Sylvester, P. J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385, 55–58 (1997).

    Article  Google Scholar 

  5. Kendall, B. et al. Pervasive oxygenation along late Archean ocean margins. Nature Geosci. 3, 647–652 (2010).

    Article  Google Scholar 

  6. Shcolnick, S., Summerfield, T. C., Reytman, L., Sherman, L. A. & Keren, N. The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol. 150, 2045–2056 (2009).

    Google Scholar 

  7. Cloud, P. E. Jr Atmospheric and hydrospheric evolution on the primitive Earth: Both secular accretion and biological and geochemical processes have affected Earth’s volatile envelope. Science 160, 729–736 (1968).

    Article  Google Scholar 

  8. Kasting, J. F. What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013).

    Article  Google Scholar 

  9. Martin, J. H. Glacial–interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  10. Beukes, N. J. & Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean–Paleoproterozoic boundary. SEG Rev. 15, 5–47 (2008).

    Google Scholar 

  11. Kamber, B. S. & Webb, G. E. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta 65, 2509–2525 (2001).

    Article  Google Scholar 

  12. Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  Google Scholar 

  13. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  Google Scholar 

  14. Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    Article  Google Scholar 

  15. Campbell, D., Hurry, V., Clarke, A. K., Gustaffson, P. & Oquist, G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667–683 (1998).

    Google Scholar 

  16. Nishiyama, Y., Allakhverdiev, S. I. & Murata, N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757, 742–749 (2006).

    Article  Google Scholar 

  17. Demirel, S., Ustun, B., Aslim, B. & Suludere, Z. Toxicity and uptake of iron ions by Synechocystis sp. E35 isolated from Kucukcekmece Lagoon, Istanbul. J. Hazard. Mater. 171, 710–716 (2009).

    Article  Google Scholar 

  18. Trabucho Alexandre, J. et al. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography 25, PA4201 (2010).

    Article  Google Scholar 

  19. Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  20. Wille, M. et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).

    Article  Google Scholar 

  21. Sumner, D. Y. & Beukes, N. J. Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal, Craton, South Africa. South Afr. J. Geol. 109, 11–22 (2006).

    Article  Google Scholar 

  22. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nature Geosci. 2, 725–729 (2009).

    Article  Google Scholar 

  23. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  Google Scholar 

  24. Czaja, A. D. et al. Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86, 118–137 (2012).

    Article  Google Scholar 

  25. Barley, M. E., Bekker, A. & Krapež, B. Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156–171 (2005).

    Article  Google Scholar 

  26. Sumner, D. Y. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. Am. J. Sci. 297, 455–487 (1997).

    Article  Google Scholar 

  27. Sumner, D. Y. & Grotzinger, J. P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentrations? Geology 24, 119–122 (1996).

    Article  Google Scholar 

  28. Wu, W. et al. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II)-oxidizer Rhodovulum iodosum-implications for Precambrian Fe(II) oxidation. FEMS Microbiol. Ecol. 88, 503–515 (2014).

    Article  Google Scholar 

  29. Lewis, B. L. & Landing, W. M. The biogeochemistry of manganese and iron in the Black Sea. Deep-Sea Res. A 38 (suppl. 2), S773–S803 (1991).

    Article  Google Scholar 

  30. Cockell, C. S., Kelly, L. C., Summers, S. & Marteinsson, V. Following the kinetics: Iron-oxidizing microbial mats in cold Icelandic volcanic habitats and their rock-associated carbonaceous signature. Astrobiology 11, 679–694 (2011).

    Article  Google Scholar 

  31. Hegler, F., Lösekann-Behrens, T., Hanselmann, K., Behrens, S. & Kappler, A. Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring. Appl. Environ. Microbiol. 78, 7185–7196 (2012).

    Article  Google Scholar 

  32. Kato, S., Chan, C., Itoh, T. & Ohkuma, M. Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Appl. Environ. Microbiol. 79, 5283–5290 (2013).

    Article  Google Scholar 

  33. James, R. E. & Ferris, F. G. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chem. Geol. 212, 301–311 (2004).

    Article  Google Scholar 

  34. Mitsunobu, S. et al. Bacteriogenic Fe(III) (oxyhydr)oxides characterized by synchrotron microprobe coupled with spatially resolved phylogenetic analysis. Environ. Sci. Technol. 46, 3304–3311 (2012).

    Article  Google Scholar 

  35. Pierson, B. K., Paranteau, M. N. & Griffin, B. M. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring. Appl. Environ. Microbiol. 65, 5474–5483 (1999).

    Google Scholar 

  36. Trouwborst, R. E., Johnston, A., Koch, G., Luther III, G. W. & Pierson, B. K. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation. Geochim. Cosmochim. Acta 71, 4627–4643 (2007).

    Article  Google Scholar 

  37. Gault, A. G. et al. Seasonal changes in mineralogy, geochemistry and microbial community of bacteriogenic iron oxides (BIOS) deposited in a circumneutral wetland. Geomicrobiol. J. 29, 161–172 (2011).

    Article  Google Scholar 

  38. Duckworth, O. W., Holmstrm, S. J. M., Pea, J. & Sposito, G. Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem. Geol. 260, 149–158 (2009).

    Article  Google Scholar 

  39. Rentz, J. A., Kraiya, C., Luther, G. W. & Emerson, D. Control of ferrous iron oxidation within circumneutral iron mats by cellular activity and autocatalysis. Environ. Sci. Technol. 41, 6084–6089 (2007).

    Article  Google Scholar 

  40. Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P. & Luther III, G. W. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 72, 3358–3370 (2008).

    Article  Google Scholar 

  41. Emerson, D. & Revsbech, N. P. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Field studies. Appl. Environ. Microbiol. 60, 4022–4031 (1994).

    Google Scholar 

  42. Roden, E. et al. The microbial ferrous wheel in a neutral pH groundwater seep. Frontiers in Microbiology 3 (2012).

Download references

Acknowledgements

This work was supported by an NSF IRFP fellowship to E.D.S. Synechococcus PCC 7002 was a gift from M. Eisenhut. D. Deubel, V. Hof, A. Klotz, E. Koeksoy, M. Maisch, S. Schmidt, C. Vogt and W. Wu assisted with experiments. This project benefited from helpful discussion with S. Eroglu, K. Forchhammer, S. J. Mojzsis, M. Mühe, M. Obst, A. Picard and B. Voelker.

Author information

Authors and Affiliations

Authors

Contributions

E.D.S., O.A.C. and A.K. designed the research; E.D.S. performed the research, E.D.S., O.A.C. and A.K. analysed the data; R.S., A.M.M. and K.O.K. helped to develop key themes; E.D.S. wrote the paper, with major contributions from A.K., A.M.M., R.S. and K.O.K.

Corresponding author

Correspondence to Elizabeth D. Swanner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swanner, E., Mloszewska, A., Cirpka, O. et al. Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nature Geosci 8, 126–130 (2015). https://doi.org/10.1038/ngeo2327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing