Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis

Subjects

Abstract

We searched for genetic alterations in human B cell lymphoma that affect the ubiquitin-proteasome system. This approach identified FBXO25 within a minimal common region of frequent deletion in mantle cell lymphoma (MCL). FBXO25 encodes an orphan F-box protein that determines the substrate specificity of the SCF (SKP1–CUL1–F-box)FBXO25 ubiquitin ligase complex. An unbiased screen uncovered the prosurvival protein HCLS1-associated protein X-1 (HAX-1) as the bona fide substrate of FBXO25 that is targeted after apoptotic stresses. Protein kinase Cδ (PRKCD) initiates this process by phosphorylating FBXO25 and HAX-1, thereby spatially directing nuclear FBXO25 to mitochondrial HAX-1. Our analyses in primary human MCL identify monoallelic loss of FBXO25 and stabilizing HAX1 phosphodegron mutations. Accordingly, FBXO25 re-expression in FBXO25-deleted MCL cells promotes cell death, whereas expression of the HAX-1 phosphodegron mutant inhibits apoptosis. In addition, knockdown of FBXO25 significantly accelerated lymphoma development in Eμ-Myc mice and in a human MCL xenotransplant model. Together we identify a PRKCD-dependent proapoptotic mechanism controlling HAX-1 stability, and we propose that FBXO25 functions as a haploinsufficient tumor suppressor and that HAX1 is a proto-oncogene in MCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FBXO25 regulates the apoptotic response by targeting HAX-1 for degradation.
Figure 2: Phosphorylation of both FBXO25and HAX-1 determines spatial and temporal control of HAX-1 degradation.
Figure 3: PRKCD phosphorylates FBXO25 and HAX-1 to promote apoptosis through HAX-1 degradation.
Figure 4: FBXO25 suppresses lymphoma growth and development through HAX-1 stabilization in vivo.
Figure 5: Disruption of the PRKCD–FBXO25–HAX-1 axis promotes survival in MCL.
Figure 6: Identification of monoallelic FBXO25 deletions and stabilizing HAX1 degron mutations in primary human MCL samples.

Similar content being viewed by others

References

  1. Shaffer, A.L. III., Young, R.M. & Staudt, L.M. Pathogenesis of human B cell lymphomas. Annu. Rev. Immunol. 30, 565–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Puebla-Osorio, N. & Zhu, C. DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis. Immunol. Res. 41, 103–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki, Y. et al. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J. Immunol. 158, 2736–2744 (1997).

    CAS  PubMed  Google Scholar 

  4. Yap, S.V., Koontz, J.M. & Kontrogianni-Konstantopoulos, A. HAX-1: a family of apoptotic regulators in health and disease. J. Cell. Physiol. 226, 2752–2761 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Chao, J.R. et al. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452, 98–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Klein, C. Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu. Rev. Immunol. 29, 399–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Peckl-Schmid, D. et al. HAX1 deficiency: impact on lymphopoiesis and B-cell development. Eur. J. Immunol. 40, 3161–3172 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Kwiecinska, A. et al. HAX-1 expression in human B lymphoma. Leukemia 25, 868–872 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Wei, X.J. et al. Expression of HAX-1 in human colorectal cancer and its clinical significance. Tumour Biol. 35, 1411–1415 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Li, M. et al. Analysis of HAX-1 gene expression in esophageal squamous cell carcinoma. Diagn. Pathol. 8, 47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han, J. et al. Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J. Biol. Chem. 285, 22461–22472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, B. et al. Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol. 13, 20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griner, E.M. & Kazanietz, M.G. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer 7, 281–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida, K. PKCdelta signaling: mechanisms of DNA damage response and apoptosis. Cell. Signal. 19, 892–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 416, 865–869 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. DeVries-Seimon, T.A., Ohm, A.M., Humphries, M.J. & Reyland, M.E. Induction of apoptosis is driven by nuclear retention of protein kinase Cδ. J. Biol. Chem. 282, 22307–22314 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Petroski, M.D. & Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Skaar, J.R., D'Angiolella, V., Pagan, J.K. & Pagano, M. SnapShot: F box proteins II. Cell 137, 1358, 1358.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Bassermann, F., Eichner, R. & Pagano, M. The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim. Biophys. Acta 1843, 150–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Skaar, J.R., Pagan, J.K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369–381 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Rubio-Moscardo, F. et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 105, 4445–4454 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Mestre-Escorihuela, C. et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109, 271–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Salaverria, I. et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression–based proliferation signature. J. Clin. Oncol. 25, 1216–1222 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheung, K.J. et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 113, 137–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Toujani, S. et al. High resolution genome-wide analysis of chromosomal alterations in Burkitt's lymphoma. PLoS ONE 4, e7089 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dreyling, M. et al. Update on the molecular pathogenesis and clinical treatment of mantle cell lymphoma: report of the 10th annual conference of the European Mantle Cell Lymphoma Network. Leuk. Lymphoma 52, 2226–2236 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Schraders, M. et al. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood 105, 1686–1693 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Flordal Thelander, E. et al. Detailed assessment of copy number alterations revealing homozygous deletions in 1p and 13q in mantle cell lymphoma. Leuk. Res. 31, 1219–1230 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Tagawa, H. et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24, 1348–1358 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Martinez-Climent, J.A. et al. Loss of a novel tumor suppressor gene locus at chromosome 8p is associated with leukemic mantle cell lymphoma. Blood 98, 3479–3482 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Hagens, O., Minina, E., Schweiger, S., Ropers, H.H. & Kalscheuer, V. Characterization of FBX25, encoding a novel brain-expressed F-box protein. Biochim. Biophys. Acta 1760, 110–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Klein, C. et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat. Genet. 39, 86–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Fernández-Sáiz, V. et al. SCF-Fbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat. Cell Biol. 15, 72–81 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Bassermann, F. et al. The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage–response checkpoint. Cell 134, 256–267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams, J.M. et al. The c-Myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Eischen, C.M., Weber, J.D., Roussel, M.F., Sherr, C.J. & Cleveland, J.L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaux, D.L., Cory, S. & Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-Myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Hatzi, K. & Melnick, A. Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis. Trends Mol. Med. 20, 343–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Souers, A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Bassermann, F. et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell 122, 45–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Bassermann, F. et al. Multisite phosphorylation of nuclear interaction partner of ALK (NIPA) at G2/M involves cyclin B1/Cdk1. J. Biol. Chem. 282, 15965–15972 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Volkmann, J. et al. High expression of crystallin αB represents an independent molecular marker for unfavourable ovarian cancer patient outcome and impairs TRAIL- and cisplatin-induced apoptosis in human ovarian cancer cells. Int. J. Cancer 132, 2820–2832 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kraus, J.A., Dabbs, D.J., Beriwal, S. & Bhargava, R. Semi-quantitative immunohistochemical assay versus oncotype DX((R)) qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study. Mod. Pathol. 25, 869–876 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Budczies, J. et al. Cutoff Finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS ONE 7, e51862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Becker, K.F. et al. Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J. Pathol. 211, 370–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Berg, D., Malinowsky, K., Reischauer, B., Wolff, C. & Becker, K.F. Use of formalin-fixed and paraffin-embedded tissues for diagnosis and therapy in routine clinical settings. Methods Mol. Biol. 785, 109–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Scuoppo, C. et al. A tumour suppressor network relying on the polyamine-hypusine axis. Nature 487, 244–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. den Hollander, J. et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116, 1498–1505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Ihle (St. Jude Children's Research Hospital), V. Kalscheuer (Max Planck Institute for Molecular Genetics), M. Pagano (New York University School of Medicine) and A. Villunger (Medical University of Innsbruck) for reagents and cell lines; J. Martinez-Climent, M. Schraders, H. Tagawa, H. Kohlhammer and E. Flordal Thelander for sending the raw data of aCGH studies; G. Keller and K. Malinowski for suggestions; K.-F. Becker and C. Schott for help with extract preparation from MCL tissue samples; and R. Oellinger for help with the MCL tissue culture models. This work was supported by grants from the German Research Foundation (KE 222/-1 and SFB824 to U.K.; and BA 2851/4-1 and Emmy Noether Program grant BA 2851/3-1 to F.B.) and the German Cancer Aid (#109543 to F.B.).

Author information

Authors and Affiliations

Authors

Contributions

U.B., V.F.-S. and F.B. conceived and designed the research. U.B. and V.F.-S. performed most of the experiments with crucial help from A.-M.K., B.-S.T., V.T. and K.E. I.J., J.S. and Z.L. helped with the MCL xenotransplant model. M.R., A.R., W.K. and M.D. provided lymphoma samples. M.R. and A.R. performed IHC analyses. R.R. performed analyses of aCGH data. S.L. and B.K. performed mass spectrometry. C.M., A.-L.I., G.L., M.B., S.P. and M.L. provided critical reagents. U.B., V.F.-S., B.-S.T., K.E., S.L., I.J., C.P., U.K., B.K. and F.B. analyzed results. F.B. coordinated this work and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Florian Bassermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 5360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumann, U., Fernández-Sáiz, V., Rudelius, M. et al. Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nat Med 20, 1401–1409 (2014). https://doi.org/10.1038/nm.3740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing