Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Lipidic phase membrane protein serial femtosecond crystallography

Abstract

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LSP batch crystallization of RCvir.
Figure 2: Serial femtosecond crystallography of RCvir crystals grown in a LSP.
Figure 3: Electron density for the LSP serial femtosecond crystallography RCvir structure at 8.2 Å resolution.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chapman, H.N. et al. Nature 470, 73–77 (2011).

    Article  CAS  Google Scholar 

  2. DePonte, D.P. et al. J. Phys. D Appl. Phys. 41, 195505 (2008).

    Article  Google Scholar 

  3. Jordan, P. et al. Nature 411, 909–917 (2001).

    Article  CAS  Google Scholar 

  4. Landau, E.M. & Rosenbusch, J.P. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  Google Scholar 

  5. Caffrey, M. Annu. Rev. Biophys. 38, 29–51 (2009).

    Article  CAS  Google Scholar 

  6. Johansson, L.C., Wöhri, A.B., Katona, G., Engstrom, S. & Neutze, R. Curr. Opin. Struct. Biol. 19, 372–378 (2009).

    Article  CAS  Google Scholar 

  7. Rosenbaum, D.M., Rasmussen, S.G. & Kobilka, B.K. Nature 459, 356–363 (2009).

    Article  CAS  Google Scholar 

  8. Wadsten, P. et al. J. Mol. Biol. 364, 44–53 (2006).

    Article  CAS  Google Scholar 

  9. Wöhri, A.B. et al. Structure 16, 1003–1009 (2008).

    Article  Google Scholar 

  10. Wöhri, A.B. et al. Biochemistry 48, 9831–9838 (2009).

    Article  Google Scholar 

  11. Emma, P. et al. Nat. Photonics 4, 641–647 (2010).

    Article  CAS  Google Scholar 

  12. Bozek, J.D. Eur. Phys. J. Spec. Top. 169, 129–132 (2009).

    Article  Google Scholar 

  13. Strüder, L. et al. Nucl. Instrum. Methods Phys. Res. A 614, 483–496 (2010).

    Article  Google Scholar 

  14. Kirian, R.A. et al. Opt. Express 18, 5713–5723 (2010).

    Article  Google Scholar 

  15. Kirian, R.A. et al. Acta Crystallogr. A 67, 131–140 (2011).

    Article  CAS  Google Scholar 

  16. Duisenberg, A.J.M. J. Appl. Cryst. 25, 92–96 (1992).

    Article  CAS  Google Scholar 

  17. Leslie, A.G.W. Acta Crystallogr. D. Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  18. McCoy, A.J. et al. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  19. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D53, 240–255 (1997).

    CAS  Google Scholar 

  20. Brunger, A.T. et al. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  21. Brunger, A.T. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Experiments were carried out at the LCLS, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. We acknowledge financial support from the Swedish Research Council (Vetenskapsrådet), the Swedish Foundation for International Cooperation in Research and Higher Education, Stiftelsen Olle Engkvist Byggmästare, the Max Planck Society for funding the development and operation of the CAMP instrument, the US National Science Foundation grant MCB 0919195, the US Department of Energy Office of Basic Energy Sciences through the Photon Ultrafast Laser Science and Engineering Center Institute at the SLAC National Accelerator Laboratory and the Energy Frontier Research Center for Bio-Inspired Solar Fuel Production (award DE-SC0001016), the Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research and the Hamburg School for Structure and Dynamics in Infection, US National Science Foundation (awards 0417142 and MCB-1021557), US National Institutes of Health (awards 1R01GM095583-01 and 1U54GM094625-01), the Deutsche Forschungsgemeinschaft Cluster of Excellence at the Munich Center for Advanced Photonics, Center for Biophotonics Science and Technology at the University of California (cooperative agreement PHY 0120999).

Author information

Authors and Affiliations

Authors

Contributions

L.C.J., R.N., H.N.C., J.C.H.S. and P.F. conceived the experiment, which was designed with A.B., R.A.K., J.C.H.S., D.P.D., U.W., R.B.D., M.J.B., D.S., I.S., S.M. and J.H. S.W.E., R.H., D.R., A.R., L.F., N.K., P.H., B.R., B.E., A.H., C.R., G.W., L.S., G.H., H.G., J.U., I.S., H.S., M.B., H.H., L.G. and H.G. designed and set up the CAMP instrument and/or developed and operated the pnCCD detectors. C.B. and J.D.B. set up and aligned the beamline; L.C.J. and D.A. grew sponge phase crystals; U.W., R.B.D., J.C.H.S., D.P.D., R.L.S. and L.L. designed and operated the injector; H.N.C., A.B., A.A., J.S., D.P.D., U.W., R.B.D., S.B., M.J.B., L.G., J.H., M.M.S., N.T., J.A., S.S. and J.C.H.S. developed diffraction instrumentation; L.C.J., D.A., T.A.W., D.P.D., U.W., R.B.D., R.L.S., L.L., E.M., J.D., K.N., M.L., A.A., M.B., A.B., M.J.B., C.B., J.D.B., C.C., R.C., N.C., T.E., H.F., P.F., C.Y.H., M.S.H., S.K., R.A.K., F.R.N.C.M., A.V.M., I.S., M.M.S., R.G.S., F.S., N.T., X.W., C.W., H.N.C., J.C.H.S. and R.N. collected data; L.C.J., D.A., T.A.W., G.K., W.Y.W. and K.N. analyzed the diffraction data using software developed by J.C.H.S., T.A.W., R.A.K., A.B. and H.N.C.; L.C.J. and R.N. wrote the paper with discussion and improvements from all authors.

Corresponding author

Correspondence to Richard Neutze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–4, Supplementary Note (PDF 5467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, L., Arnlund, D., White, T. et al. Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9, 263–265 (2012). https://doi.org/10.1038/nmeth.1867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing