Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BMP6-induced modulation of the tumor micro-milieu

Abstract

Melanoma is the deadliest form of skin cancer with rising incidence, creating a significant health problem. We discovered increased expression of bone morphogenetic protein 6 (BMP6) in melanoma cells and tissues, and observed that BMP6 deficiency caused significantly delayed tumor onset and decelerated tumor progression in a melanoma mouse model. Moreover, we determined that BMP6 inhibits dermal mast cell recruitment and found that mast cell-derived mediators significantly reduced melanoma growth in vitro. In line with this, mast cell deficiency accelerated tumor onset and progression in a melanoma mouse model. Analysis of human melanoma tissues revealed a strong negative correlation between melanoma proliferation and mast cell infiltration. This study elucidates a novel role of BMP6-induced modulation of the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keller HR, Zhang X, Li L, Schaider H, Wells JW. Overcoming resistance to targeted therapy with immunotherapy and combination therapy for metastatic melanoma. Oncotarget 2017;8:75675–86.

  2. Pulluri B, Kumar A, Shaheen M, Jeter J, Sundararajan S. Tumor microenvironment changes leading to resistance of immune checkpoint inhibitors in metastatic melanoma and strategies to overcome resistance. Pharmacol Res. 2017;123:95–102.

    Article  CAS  Google Scholar 

  3. Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8:a021899.

  4. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609–20.

    Article  CAS  Google Scholar 

  5. Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res. 2005;65:448–56.

    CAS  PubMed  Google Scholar 

  6. Rothhammer T, Braig S, Bosserhoff AK. Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur J Cancer. 2008;44:2526–34.

    Article  CAS  Google Scholar 

  7. Hsu MY, Rovinsky SA, Lai CY, Qasem S, Liu X, How J, et al. Aggressive melanoma cells escape from BMP7-mediated autocrine growth inhibition through coordinated Noggin upregulation. Lab Invest. 2008;88:842–55.

    Article  CAS  Google Scholar 

  8. Na YR, Seok SH, Kim DJ, Han JH, Kim TH, Jung H, et al. Bone morphogenetic protein 7 induces mesenchymal-to-epithelial transition in melanoma cells, leading to inhibition of metastasis. Cancer Sci. 2009;100:2218–25.

    Article  CAS  Google Scholar 

  9. Lyons KM, Pelton RW, Hogan BL. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev. 1989;3:1657–68.

    Article  CAS  Google Scholar 

  10. Wall NA, Blessing M, Wright CV, Hogan BL. Biosynthesis and in vivo localization of the decapentaplegic-Vg-related protein, DVR-6 (bone morphogenetic protein-6). J Cell Biol. 1993;120:493–502.

    Article  CAS  Google Scholar 

  11. Drozdoff V, Wall NA, Pledger WJ. Expression and growth inhibitory effect of decapentaplegic Vg-related protein 6: evidence for a regulatory role in keratinocyte differentiation. Proc Natl Acad Sci USA. 1994;91:5528–32.

    Article  CAS  Google Scholar 

  12. Botchkarev VA. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. J Invest Dermatol. 2003;120:36–47.

    Article  CAS  Google Scholar 

  13. Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ. Mice lacking Bmp6 function. Dev Genet. 1998;22:321–39.

    Article  CAS  Google Scholar 

  14. Arndt S, Maegdefrau U, Dorn C, Schardt K, Hellerbrand C, Bosserhoff AK. Iron-induced expression of bone morphogenic protein 6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo. Gastroenterology. 2010;138:372–82.

    Article  CAS  Google Scholar 

  15. Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet. 2009;41:478–81.

    Article  CAS  Google Scholar 

  16. Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009;41:482–7.

    Article  CAS  Google Scholar 

  17. Arndt S, Wacker E, Dorn C, Koch A, Saugspier M, Thasler WE, et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut. 2015;64:973–81.

    Article  CAS  Google Scholar 

  18. Hu F, Zhang Y, Li M, Zhao L, Chen J, Yang S, et al. BMP-6 inhibits the metastasis of MDA-MB-231 breast cancer cells by regulating MMP-1 expression. Oncol Rep. 2016;35:1823–30.

    Article  CAS  Google Scholar 

  19. Atlas HP. (http://www.proteinatlas.org/ENSG00000153162BMP6/cancer/tissue/melanoma) 2018.

  20. Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A, et al. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet. 2003;34:108–12.

    Article  CAS  Google Scholar 

  21. Ribeiro-Filho J, Leite FC, Costa HF, Calheiros AS, Torres RC, de Azevedo CT, et al. Curine inhibits mast cell-dependent responses in mice. J Ethnopharmacol. 2014;155:1118–24.

    Article  CAS  Google Scholar 

  22. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35–51.

    Article  CAS  Google Scholar 

  23. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011;30:45–60.

    Article  CAS  Google Scholar 

  24. Amelio I, Tsvetkov PO, Knight RA, Lisitsa A, Melino G, Antonov AV. SynTarget: an online tool to test the synergetic effect of genes on survival outcome in cancer. Cell Death Differ. 2016;23:912.

    Article  CAS  Google Scholar 

  25. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity. 2011;35:832–44.

    Article  CAS  Google Scholar 

  26. Dyduch G, Okon K, Pescarini E. Mast cells in melanocytic skin lesions. An immunohistochemical and quantitative study. Pol J Pathol. 2011;62:139–44.

    PubMed  Google Scholar 

  27. Biswas A, Richards JE, Massaro J, Mahalingam M. Mast cells in cutaneous tumors: innocent bystander or maestro conductor? Int J Dermatol. 2014;53:806–11.

    Article  Google Scholar 

  28. Theoharides TC, Conti P. Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol. 2004;25:235–41.

    Article  CAS  Google Scholar 

  29. Ch’ng S, Wallis RA, Yuan L, Davis PF, Tan ST. Mast cells and cutaneous malignancies. Mod Pathol. 2006;19:149–59.

    Article  Google Scholar 

  30. Siiskonen H, Poukka M, Bykachev A, Tyynela-Korhonen K, Sironen R, Pasonen-Seppanen S, et al. Low numbers of tryptase + and chymase + mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res. 2015;25:479–85.

    Article  CAS  Google Scholar 

  31. Benyon RC, Bissonnette EY, Befus AD. Tumor necrosis factor-alpha dependent cytotoxicity of human skin mast cells is enhanced by anti-IgE antibodies. J Immunol. 1991;147:2253–8.

    CAS  PubMed  Google Scholar 

  32. Swope VB, Abdel-Malek Z, Kassem LM, Nordlund JJ. Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol. 1991;96:180–5.

    Article  CAS  Google Scholar 

  33. Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, et al. AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy. 2008;63:1255–66.

    Article  CAS  Google Scholar 

  34. Lu C, Kerbel RS. Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J Cell Biol. 1993;120:1281–8.

    Article  CAS  Google Scholar 

  35. Forward NA, Furlong SJ, Yang Y, Lin TJ, Hoskin DW. Mast cells down-regulate CD4 + CD25 + T regulatory cell suppressor function via histamine H1 receptor interaction. J Immunol. 2009;183:3014–22.

    Article  CAS  Google Scholar 

  36. Yang XD, Ai W, Asfaha S, Bhagat G, Friedman RA, Jin G, et al. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b + Ly6G + immature myeloid cells. Nat Med. 2011;17:87–95.

    Article  CAS  Google Scholar 

  37. Hellstrand K. Histamine in cancer immunotherapy: a preclinical background. Semin Oncol. 2002;29:35–40.

    Article  CAS  Google Scholar 

  38. Weller CL, Collington SJ, Williams T, Lamb JR. Mast cells in health and disease. Clin Sci (Lond). 2011;120:473–84.

    Article  CAS  Google Scholar 

  39. Braig S, Mueller DW, Rothhammer T, Bosserhoff AK. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 2010;67:3535–48.

    Article  CAS  Google Scholar 

  40. Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 2011;129:1064–74.

    Article  CAS  Google Scholar 

  41. Schiffner S, Zimara N, Schmid R, Bosserhoff AK. p54nrb is a new regulator of progression of malignant melanoma. Carcinogenesis. 2011;32:1176–82.

    Article  CAS  Google Scholar 

  42. Ott CA, Linck L, Kremmer E, Meister G, Bosserhoff AK. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget. 2016;7:62292–304.

    Article  Google Scholar 

  43. Marin YE, Namkoong J, Cohen-Solal K, Shin SS, Martino JJ, Oka M, et al. Stimulation of oncogenic metabotropic glutamate receptor 1 in melanoma cells activates ERK1/2 via PKCepsilon. Cell Signal. 2006;18:1279–86.

    Article  CAS  Google Scholar 

  44. Shin SS, Wall BA, Goydos JS, Chen S. AKT2 is a downstream target of metabotropic glutamate receptor 1 (Grm1). Pigment Cell Melanoma Res. 2010;23:103–11.

    Article  CAS  Google Scholar 

  45. Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS, et al. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res. 2007;67:2298–305.

    Article  CAS  Google Scholar 

  46. Schiffner S, Chen S, Becker JC, Bosserhoff AK. Highly pigmented Tg(Grm1) mouse melanoma develops non-pigmented melanoma cells in distant metastases. Exp Dermatol. 2012;21:786–8.

    Article  Google Scholar 

  47. Voller D, Reinders J, Meister G, Bosserhoff AK. Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer. 2013;109:3116–24.

    Article  CAS  Google Scholar 

  48. Schiffner S, Braunger BM, de Jel MM, Coupland SE, Tamm ER, Bosserhoff AK. Tg(Grm1) transgenic mice: a murine model that mimics spontaneous uveal melanoma in humans? Exp Eye Res. 2014;127:59–68.

    Article  CAS  Google Scholar 

  49. Bosserhoff AK, Ellmann L, Kuphal S. Melanoblasts in culture as an in vitro system to determine molecular changes in melanoma. Exp Dermatol. 2011;20:435–40.

    Article  CAS  Google Scholar 

  50. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Suzie Chen (Department of Chemical Biology, Rutgers University, Piscataway, USA) and Dr. Jürgen Becker (University Hospital Essen, Department for Dermatology and Venerology) for providing the GRM1-transgenic animals. We also thank Dr. Hans-Reimer Rodewald and Dr. Thorsten Feyerabend (Department of Immunology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany) for providing the mast cell-deficient Cre-Master mice. Furthermore, we thank Simone Hofmeister, Susanne Wallner, Eva Wacker, Ingmar Henz and Rudolf Jung for excellent technical assistance. Furthermore, we are grateful to Dr. Petra Rümmele for excellent advice in the evaluation of tissue sections.

Author contributions

DS, SL, and AKB conceived and designed the project. DS, PD, SL, and LF acquired the data. DS, SL, LF, PD, SK, SA, BE, CH, SK, and AKB analyzed and interpreted the data. DS, CH, and AKB wrote the manuscript.

Funding information

This work was supported by the German Cancer Aid, the German research Foundation (DFG, HE2458/18; BO1573, Research Training Group “RTG 1962/1”) and the Interdisciplinary Center for Clinical Research (IZKF) Erlangen (D24 (AB)).

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files, or available from the authors upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja-Katrin Bosserhoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stieglitz, D., Lamm, S., Braig, S. et al. BMP6-induced modulation of the tumor micro-milieu. Oncogene 38, 609–621 (2019). https://doi.org/10.1038/s41388-018-0475-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0475-x

This article is cited by

Search

Quick links