Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unravelling disparate roles of NOTCH in bladder cancer

Abstract

The Notch pathway has been implicated in both oncogenic and tumour-suppressive roles in cancer depending on the tissue type and cellular context. However, until recently, little was known about the pathway in bladder cancer. Studies have revealed that NOTCH1 copy number and expression are decreased in bladder cancer and NOTCH1 activation in bladder cancer cell lines reduces proliferation, suggesting that NOTCH1 acts as a tumour suppressor. Furthermore, in transgenic models, bladder cancer is promoted by bladder-specific inactivation of a component of the γ-secretase complex, which liberates the intracellular domain of neurogenic locus Notch homologue protein (NOTCH) and starts the signalling cascade. By contrast, further work has demonstrated that NOTCH2 acts as an oncogene that promotes cell proliferation and metastasis through epithelial-to-mesenchymal transition, cell cycle progression, and maintenance of stemness. Studies indicating that NOTCH1 and NOTCH2 have opposite effects on the progression of bladder cancer could give rise to potential therapeutic approaches aimed at blocking or restoring the Notch pathway.

Key points

  • The Notch pathway has been shown to have both oncogenic and tumour-suppressive effects depending on the tissue and cellular context.

  • NOTCH1 copy number and expression are decreased in bladder cancer; activation of NOTCH1 in bladder cancer cell lines reduces cellular proliferation, suggesting a tumour-suppressive role.

  • Transgenic models have shown that bladder-specific inactivation of a component of the γ-secretase complex liberates the intracellular domain of Notch and starts the signalling cascade.

  • NOTCH2 has been shown to act as an oncogene in bladder cancer, promoting cellular proliferation and metastasis.

  • The Notch pathway could be harnessed for therapeutic benefit in patients with bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The core Notch pathway in bladder cancer.
Fig. 2: Copy number variations and mutations in Notch receptors in The Cancer Genome Atlas.
Fig. 3: Map of mutations found in NOTCH1 and NOTCH2 receptors.
Fig. 4: Notch pathway alterations do not correlate with survival.
Fig. 5: HES1 expression correlates with improved survival.
Fig. 6: HEY1 expression correlates with poorer survival.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, 359–386 (2015).

    Article  CAS  Google Scholar 

  2. Kaufman, D. S., Shipley, W. U. & Feldman, A. S. Bladder cancer. Lancet 374, 239–249 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Kirkali, Z. et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66, 4–34 (2005).

    Article  PubMed  Google Scholar 

  4. Malats, N. & Real, F. X. Epidemiology of bladder cancer. Hematol. Oncol. Clin. North Am. 29, 177–189 (2015).

    Article  PubMed  Google Scholar 

  5. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hussain, M. H. A. et al. Bladder cancer: Narrowing the gap between evidence and practice. J. Clin. Oncol. 27, 5680–5684 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Pietzak, E. J. et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 72, 952–959 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Network, T. C. G. A. R., Cancer, T. & Atlas, G. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  10. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wilson, A. & Radtke, F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett. 580, 2860–2868 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Artavanis-tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–777 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Lin, C. et al. Mutations increased overexpression of Notch1 in T-cell acute lymphoblastic leukemia. Cancer Cell. Int. 12, 13 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Clay, M. R., Varma, S. & West, R. B. MAST2 and NOTCH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum. Pathol. 44, 2837–2844 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Tonon, G. et al. t(11;19)(q21; p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat. Genet. 33, 208–213 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling. Mol. Cell 5, 207–216 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. Kopan, R. & Ilagan, M. X. G. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bray, S. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Mack, J. A., Anand, S. & Maytin, E. V. Proliferation and cornification during development of the mammalian epidermis. Birth Defects Res. C Embryo Today 75, 314–329 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Colopy, S. A., Bjorling, D. E., Mulligan, W. A. & Bushman, W. A population of progenitor cells in the basal and intermediate layers of the murine bladder urothelium contributes to urothelial development and regeneration. Dev. Dyn. 243, 988–998 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Blanpain, C. & Fuchs, E. p63: revving up epithelial stem-cell potential. Nat. Cell Biol. 9, 731–733 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Dotto, G. P. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat. Rev. Cancer 9, 587–595 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Okuyama, R. et al. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene 26, 4478–4488 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. Greife, A. et al. Canonical Notch signalling is inactive in urothelial carcinoma. BMC Cancer 14, 628 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20, 1028–1042 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Watt, F. M., Estrach, S. & Ambler, C. A. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr. Opin. Cell Biol. 20, 171–179 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Karni-Schmidt, O. et al. Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. Am. J. Pathol. 178, 1350–1360 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kurzrock, E. A., Lieu, D. K., Lea, A., Chan, C. W. & Isseroff, R. R. Label-retaining cells of the bladder: candidate urothelial stem cells. Am. J. Physiol. Ren. Physiol. 294, 1415–1421 (2008).

    Article  CAS  Google Scholar 

  33. Urist, M. J. et al. Loss of p63 expression is associated with tumor progression in bladder cancer. Am. J. Pathol. 161, 1199–1206 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Choi, W. et al. p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS ONE 7, e30206 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Reichrath, J. & Reichrath, S. Notch Signaling in Embryology and Cancer 174–315 (Springer, New York, 2012).

    Book  Google Scholar 

  36. Espinoza, I. & Miele, L. Notch inhibitors for cancer treatment. Pharmacol. Ther. 139, 95–110 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  PubMed  CAS  Google Scholar 

  38. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Malyukova, A. et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res. 67, 5611–5616 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. O’Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bernasconi-Elias, P. et al. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene 35, 6077–6086 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Callahan, R. & Egan, S. E. Notch signaling in mammary development and oncogenesis. J. Mammary Gland Biol. Neoplasia 9, 145–163 (2004).

    Article  PubMed  Google Scholar 

  44. Politi, K., Feirt, N. & Kitajewski, J. Notch in mammary gland development and breast cancer. Semin. Cancer Biol. 14, 341–347 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Irvin, D. K., Zurcher, S. D., Nguyen, T., Weinmaster, G. & Kornblum, H. I. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J. Comp. Neurol. 436, 167–181 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. Solecki, D. J., Liu, X., Tomoda, T., Fang, Y. & Hatten, M. E. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31, 557–568 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Westhoff, B. et al. Alterations of the Notch pathway in lung cancer. Proc. Natl Acad. Sci. USA 106, 22293–22298 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. De Falco, F. et al. Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL. Oncotarget 6, 16559–16572 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Willander, K. et al. NOTCH1 mutations influence survival in chronic lymphocytic leukemia patients. BMC Cancer 13, 274 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mazur, P. K. et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 107, 13438–13443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hanlon, L. et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res. 70, 4280–4286 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nakhai, H. et al. Conditional ablation of Notch signaling in pancreatic development. Development 135, 2757–2765 (2008).

    Article  PubMed  CAS  Google Scholar 

  55. Viatour, P. et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J. Exp. Med. 208, 1963–1976 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Qi, R. et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63, 8323–8329 (2003).

    PubMed  CAS  Google Scholar 

  57. Hayashi, Y., Osanai, M. & Lee, G.-H. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells. Oncol. Rep. 34, 1650–1658 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhou, L. et al. The down-regulation of Notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/snail/E− cadherin pathway in vitro. Dig. Dis. Sci. 58, 1016–1025 (2013).

    Article  PubMed  CAS  Google Scholar 

  59. Cantarini, M. C. et al. Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 44, 446–457 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pickering, C. R. et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 3, 770–781 (2013).

    Article  PubMed  CAS  Google Scholar 

  64. Leethanakul, C. et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19, 3220–3224 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Hijioka, H. et al. Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int. J. Oncol. 36, 817–822 (2010).

    PubMed  CAS  Google Scholar 

  66. Zhang, T. H. et al. Activation of Notch signaling in human tongue carcinoma. J. Oral Pathol. Med. 40, 37–45 (2011).

    Article  PubMed  CAS  Google Scholar 

  67. Yoshida, R. et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab. Invest. 93, 1068–1081 (2013).

    Article  PubMed  CAS  Google Scholar 

  68. Sun, W. et al. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74, 1091–1104 (2014).

    Article  PubMed  CAS  Google Scholar 

  69. Kuang, S. Q. et al. Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia. PLoS ONE 8, e61807 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bedogni, B., Warneke, J. A., Nickoloff, B. J., Giaccia, A. J. & Powell, M. B. Notch1 is an effector of Akt and hypoxia in melanoma development. J. Clin. Invest. 118, 3660–3670 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Liu, Z. J. et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 66, 4182–4190 (2006).

    Article  PubMed  CAS  Google Scholar 

  72. Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Reedijk, M. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530–8537 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Hu, C. et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am. J. Pathol. 168, 973–990 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gallahan, D. et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56, 1775–1785 (1996).

    PubMed  CAS  Google Scholar 

  76. Harrison, H. et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70, 709–718 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by Delta-Notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    Article  PubMed  CAS  Google Scholar 

  78. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 33, 416–421 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. Zweidler-McKay, P. A. et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 106, 3898–3906 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang, K. et al. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin. Cancer Res. 21, 1487–1496 (2015).

    Article  PubMed  CAS  Google Scholar 

  81. Stoeck, A. et al. Discovery of biomarkers predictive of GSI response in triple negative breast cancer and adenoid cystic carcinoma. Cancer Discov. 4, 1154–1167 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Fan, X. et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 64, 7787–7793 (2004).

    Article  PubMed  CAS  Google Scholar 

  83. Demehri, S., Turkoz, A. & Kopan, R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16, 55–66 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang, N. J. et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl Acad. Sci. USA 108, 17761–17766 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baumgart, A. et al. Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene 34, 1–11 (2014).

    Google Scholar 

  86. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416–428 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Maraver, A. et al. NOTCH pathway inactivation promotes bladder cancer progression. J. Clin. Invest. 125, 824–830 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rampias, T. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat. Med. 20, 1199–1205 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Hayashi, T. et al. Not all NOTCH is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin. Cancer Res. 22, 2981–2992 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Zhang, H. et al. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma. Oncotarget 8, 34362–34373 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e25 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Kimura, F. et al. Destabilization of chromosome 9 in transitional cell carcinoma of the urinary bladder. Br. J. Cancer 85, 1887–1893 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Guo, G. et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet. 45, 1459–1463 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 31, 3133–3140 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Cazier, J.-B. et al. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat. Commun. 5, 3756 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Xu, T. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway. PLoS ONE 9, e102292 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bryan, G. T. The pathogenesis of experimental bladder cancer. Cancer Res. 37, 2813–2816 (1977).

    PubMed  CAS  Google Scholar 

  98. García-Cao, I. et al. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep. 6, 577–583 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Espinosa, L. et al. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 18, 268–281 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Maraver, A. et al. Therapeutic effect of gamma-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell 22, 222–234 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wendorff, A. A. et al. Hes1 is a critical but context-dependent mediator of canonical notch signaling in lymphocyte development and transformation. Immunity 33, 671–684 (2010).

    Article  PubMed  CAS  Google Scholar 

  103. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010).

    Article  PubMed  CAS  Google Scholar 

  104. Purow, B. Notch inhibitors as a new tool in the war on cancer: a pathway to watch. Curr. Pharm. Biotechnol. 10, 154–160 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Luistro, L. et al. Preclinical profile of a potent γ-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res. 69, 7672–7680 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Previs, R. A., Coleman, R. L., Harris, A. L. & Sood, A. K. Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin. Cancer Res. 21, 955–961 (2015).

    Article  PubMed  CAS  Google Scholar 

  107. Yuan, X. et al. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett. 369, 20–27 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Dobranowski, P., Ban, F., Contreras-Sanz, A., Cherkasov, A. & Black, P. C. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem. Biol. Drug Design 91, 691–706 (2018).

    Article  CAS  Google Scholar 

  109. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    Article  PubMed  CAS  Google Scholar 

  110. Ferrarotto, R. et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J. Clin. Oncol. 35, 352–360 (2017).

    Article  PubMed  CAS  Google Scholar 

  111. Yen, W. C. et al. Targeting notch signaling with a Notch2/Notch3 antagonist (Tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin. Cancer Res. 21, 2084–2095 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Lee, D. et al. Simultaneous blockade of VEGF and Dll4 by HD105, a bispecific antibody, inhibits tumor progression and angiogenesis. mAbs 8, 892–904 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Andersson, E. R. & Lendahl, U. Therapeutic modulation of Notch signalling-are we there yet? Nat. Rev. Drug Discov. 13, 357–378 (2014).

    Article  PubMed  CAS  Google Scholar 

  114. Espinoza, I., Pochampally, R., Xing, F., Watabe, K. & Miele, L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 6, 1249–1259 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Kangsamaksin, T. et al. NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov. 5, 182–197 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kim, P. H. et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur. Urol. 67, 198–201 (2015).

    Article  PubMed  Google Scholar 

  118. Al-Ahmadie, H. A. et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat. Genet. 48, 356–358 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions predicting deleterious amino acid substitutions. Genome Res. 11, 863–874 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the Canadian Cancer Society Research Institute (P.C.B.).

Author information

Authors and Affiliations

Authors

Contributions

P.C.B., A.G., R.S., A.W.W., and A.B. researched data for the article. P.C.B., A.G., R.S., and A.W.W. made substantial contributions to discussions of content. P.C.B., A.G., and A.W.W. wrote the manuscript. P.C.B., A.G., R.S., A.W.W., A.C.-S., A.M., and T.H. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Peter C. Black.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goriki, A., Seiler, R., Wyatt, A.W. et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol 15, 345–357 (2018). https://doi.org/10.1038/s41585-018-0005-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0005-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing