Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human dendritic cells genetically engineered to express cytosolically retained fragment of prostate-specific membrane antigen prime cytotoxic T-cell responses to multiple epitopes

Abstract

The ability of two plasmid DNA vaccines to stimulate lymphocytes from normal human donors and to generate antigen-specific responses is demonstrated. The first vaccine (truncated; tPSMA) encodes for only the extracellular domain of prostate-specific membrane antigen (PSMA). The product, expressed following transfection with this vector, is retained in the cytosol and degraded by the proteasomes. For the “secreted” (sPMSA) vaccine, a signal peptide sequence is added to the expression cassette and the expressed protein is glycosylated and directed to the secretory pathway. Monocyte-derived dendritic cells (DCs) are transiently transfected with either sPSMA or tPSMA plasmids. The DCs are then used to activate autologous lymphocytes in an in vitro model of DNA vaccination. Lymphocytes are boosted following priming with transfected DCs or with peptide-pulsed monocytes. Their reactivity is tested against tumor cells or peptide-pulsed T2 target cells. Both tPSMA DCs and sPSMA DCs generate antigen-specific cytotoxic T-cell responses. The immune response is restricted toward one of the four PSMA-derived epitopes when priming and boosting is performed with sPSMA. In contrast, tPSMA-transfected DCs prime T cells toward several PSMA-derived epitopes. Subsequent repeated boosting with transfected DCs, however, restricts the immune response to a single epitope due to immunodominance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mincheff M, Tchakarov S, Zoubak S, et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol. 2000;38:208–217.

    Article  CAS  Google Scholar 

  2. Mincheff M, Altankova I, Zoubak S et al. In vivo transfection and/or cross-priming of dendritic cells following DNA and adenoviral immunizations for immunotherapy of cancer—changes in peripheral mononuclear subsets and intracellular IL-4 and IFN-gamma lymphokine profile. Crit Rev Oncol Hematol. 2001;39:125–132.

    Article  CAS  Google Scholar 

  3. Weber LW, Bowne WB, Wolchok JD, et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J Clin Invest. 1998;102:1258–1264.

    Article  CAS  Google Scholar 

  4. Israeli RS, Powell CT, Fair WR, et al. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 1993;53:227–230.

    CAS  PubMed  Google Scholar 

  5. Wright GL Jr, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–334.

    Article  Google Scholar 

  6. Chang SS, Gaudin PB, Reuter VE, et al. Prostate-specific membrane antigen: present and future applications. Urology 2000;55:622–629.

    Article  CAS  Google Scholar 

  7. Chang SS, Gaudin PB, Reuter VE, et al. Prostate-specific membrane antigen: much more than a prostate cancer marker. Mol Urol. 1999;3:313–320.

    CAS  PubMed  Google Scholar 

  8. Heston WD . [Significance of prostate-specific membrane antigen (PSMA). A neurocarboxypeptidase and membrane folate hydrolase]. Urologe A. 1996;35:400–407.

    Article  CAS  Google Scholar 

  9. Silver DA, Pellicer I, Fair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–85.

    CAS  PubMed  Google Scholar 

  10. Shneider BL, Thevananther S, Moyer MS, et al. Cloning and characterization of a novel peptidase from rat and human ileum. J Biol Chem. 1997;272:31006–31015.

    Article  CAS  Google Scholar 

  11. Halsted CH, Ling E, Luthi-Carter R, et al. Folylpoly-gamma-glutamate carboxypeptidase from pig jejunum. Molecular characterization and relation to glutamate carboxypeptidase II. J Biol Chem. 2000;275:30746.

    CAS  Google Scholar 

  12. Chang SS, O'Keefe DS, Bacich DJ, et al. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res. 1999;5:2674–2681.

    CAS  PubMed  Google Scholar 

  13. Sprent J, Schaefer M . Antigen-presenting cells for unprimed T cells. Immunol Today. 1989;10:17–23.

    Article  CAS  Google Scholar 

  14. Bennink JR, Anderson R, Bacik I, et al. Antigen processing: where tumor-specific T-cell responses begin. J Immunother. 1993;14:202–208.

    Article  CAS  Google Scholar 

  15. Restifo NP, Kawakami Y, Marincola F, et al. Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother. 1993;14:182–190.

    Article  CAS  Google Scholar 

  16. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998.

    Article  CAS  Google Scholar 

  17. Schreiber H, Wu TH, Nachman J, et al. Immunodominance and tumor escape. Semin Cancer Biol. 2002;12:25–31.

    Article  CAS  Google Scholar 

  18. Ikeda H, Old LJ, Schreiber RD . The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 2002;13:95–109.

    Article  CAS  Google Scholar 

  19. Yewdell JW, Bennink JR . Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol. 1999;17:51–88.

    Article  CAS  Google Scholar 

  20. Pinto JT, Suffoletto BP, Berzin TM, et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res. 1996;2:1445–1451.

    CAS  PubMed  Google Scholar 

  21. Rawlings ND, Barrett AJ . Structure of membrane glutamate carboxypeptidase. Biochim Biophys Acta. 1997;1339:247–252.

    Article  CAS  Google Scholar 

  22. Holmes EH, Greene TG, Tino WT, et al. Analysis of glycosylation of prostate-specific membrane antigen derived from LNCaP cells, prostatic carcinoma tumors, and serum from prostate cancer patients. Prostate Suppl. 1996;7:25–29.

    Article  CAS  Google Scholar 

  23. Barinka C, Rinnova M, Sacha P, et al. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem. 2002;80:477–487.

    Article  CAS  Google Scholar 

  24. DeMars R, Chang CC, Shaw S, et al. Homozygous deletions that simultaneously eliminate expressions of class I and class II antigens of EBV-transformed B-lymphoblastoid cells. I. Reduced proliferative responses of autologous and allogeneic T cells to mutant cells that have decreased expression of class II antigens. Hum Immunol. 1984;11:77–97.

    Article  CAS  Google Scholar 

  25. Matzinger P . The JAM test. A simple assay for DNA fragmentation and cell death. J Immunol Methods. 1991;145:185–192.

    Article  CAS  Google Scholar 

  26. Parker KC, Bednarek MA, Hull LK, et al. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol. 1992;149:3580–3587.

    CAS  PubMed  Google Scholar 

  27. Kaye PM . Costimulation and the regulation of antimicrobial immunity. Immunol Today. 1995;16:423–427.

    Article  CAS  Google Scholar 

  28. Lenschow DJ, Walunas TL, Bluestone JA . CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258.

    Article  CAS  Google Scholar 

  29. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–413.

    Article  CAS  Google Scholar 

  30. Manzotti CN, Tipping H, Perry LC, et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur J Immunol. 2002;32:2888–2896.

    Article  CAS  Google Scholar 

  31. Davis MM, Chien YH, Bjorkman PJ, et al. A possible basis for major histocompatibility complex-restricted T-cell recognition. Philos Trans R Soc Lond B 1989;323:521–524.

    Article  CAS  Google Scholar 

  32. Kedl RM, Schaefer BC, Kappler JW, et al. T cells down-modulate peptide-MHC complexes on APCs in vivo. Nat Immunol. 2002;3:27–32.

    Article  CAS  Google Scholar 

  33. Mitchison NA . Specialization, tolerance, memory, competition, latency, and strife among T cells. Annu Rev Immunol. 1992;10:1–12.

    Article  CAS  Google Scholar 

  34. Lightstone E, Marvel J, Mitchison A . Memory in helper T cells of minor histocompatibility antigens, revealed in vivo by alloimmunizations in combination with Thy-1 antigen. Eur J Immunol. 1992;22:115–122.

    Article  CAS  Google Scholar 

  35. Clark EA, Lake P, Favila-Castillo L . Modulation of Thy-1 alloantibody responses: donor cell-associated H-2 inhibition and augmentation without recipient Ir gene control. J Immunol. 1981;127:2135–2140.

    CAS  PubMed  Google Scholar 

  36. Rapoport TA, Rolls MM, Jungnickel B . Approaching the mechanism of protein transport across the ER membrane. Curr Opin Cell Biol. 1996;8:499–504.

    Article  CAS  Google Scholar 

  37. Kedl RM, Rees WA, Hildeman DA, et al. T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med. 2000;192:1105–1113.

    Article  CAS  Google Scholar 

  38. Greene JL, Leytze GM, Emswiler J, et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem. 1996;271:26762–26771.

    Article  CAS  Google Scholar 

  39. van der Merwe PA, Bodian DL, Daenke S, et al. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997;185:393–403.

    Article  CAS  Google Scholar 

  40. Thompson CB, Allison JP . The emerging role of CTLA-4 as an immune attenuator. Immunity. 1997;7:445–450.

    Article  CAS  Google Scholar 

  41. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–988.

    Article  CAS  Google Scholar 

  42. Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–547.

    Article  CAS  Google Scholar 

  43. Egen JG, Allison JP . Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002;16:23–35.

    Article  CAS  Google Scholar 

  44. Masteller EL, Chuang E, Mullen AC, et al. Structural analysis of CTLA-4 function in vivo. J Immunol. 2000;164:5319–5327.

    Article  CAS  Google Scholar 

  45. Doyle AM, Mullen AC, Villarino AV, et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J Exp Med. 2001;194:893–902.

    Article  CAS  Google Scholar 

  46. Read S, Malmstrom V, Powrie F . Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.

    Article  CAS  Google Scholar 

  47. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303–310.

    Article  CAS  Google Scholar 

  48. Shevach EM . Regulatory T cells in autoimmmunity. Annu Rev Immunol. 2000;18:423–449.

    Article  CAS  Google Scholar 

  49. Groux H, Powrie F . Regulatory T cells and inflammatory bowel disease. Immunol Today. 1999;20:442–445.

    Article  CAS  Google Scholar 

  50. Sakaguchi S . Regulatory T cells: mediating compromises between host and parasite. Nat Immunol. 2003;4:10–11.

    Article  CAS  Google Scholar 

  51. Smith SG, Patel PM, Porte J, et al. Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res. 2001;7:4253–4261.

    CAS  PubMed  Google Scholar 

  52. Mateo L, Gardner J, Chen Q, et al. An HLA-A2 polyepitope vaccine for melanoma immunotherapy. J Immunol. 1999;163:4058–4063.

    CAS  PubMed  Google Scholar 

  53. Firat H, Garcia-Pons F, Tourdot S, et al. H-2 class I knockout HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol. 1999;29:3112–3121.

    Article  CAS  Google Scholar 

  54. Loirat D, Lemonnier FA, Michel ML . Multiepitopic HLA-A*0201-restricted immune response against hepatitis B surface antigen after DNA-based immunization. J Immunol. 2000;165:4748–4755.

    Article  CAS  Google Scholar 

  55. Palmowski MJ, Choi EM, Hermans IF, et al. Competition between CTL narrows the immune response induced by prime-boost vaccination protocols. J Immunol. 2002;168:4391–4398.

    Article  CAS  Google Scholar 

  56. Kedl RM, Kappler JW, Marrack P . Epitope dominance, competition and T cell affinity maturation. Curr Opin Immunol. 2003;15:120–127.

    Article  CAS  Google Scholar 

  57. Lu J, Celis E . Recognition of prostate tumor cells by cytotoxic T lymphocytes specific for prostate-specific membrane antigen. Cancer Res. 2002;62:5807–5812.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant N00014-00-1-0787 from the Office of Naval Research and by award No. DAMD17-02-1-0239. The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. For the purpose of this article, information includes news releases, articles, manuscripts, brochures, advertisements, still and motion pictures, speeches, trade association proceedings, etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milcho Mincheff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mincheff, M., Zoubak, S., Altankova, I. et al. Human dendritic cells genetically engineered to express cytosolically retained fragment of prostate-specific membrane antigen prime cytotoxic T-cell responses to multiple epitopes. Cancer Gene Ther 10, 907–917 (2003). https://doi.org/10.1038/sj.cgt.7700647

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700647

Keywords

This article is cited by

Search

Quick links