Skip to main content
Log in

Dye-injected electron trapping in TiO2 determined by broadband transient infrared spectroscopy

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report the dynamics of electrons injected into TiO2 due to the excitation of Ru-N719 dye at 532 nm. The synchrotron based broadband transient mid-IR spectroscopy revealed that the injected electrons are quickly confined to a trap state with an average energy of ca. 240 meV below the conduction band. The average energy of the trapping states did not change with the increase of the delay time, suggesting a singular electronic identity of the trap states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. A. Fujishima, K. Honda, Nature, 1972, 238, 37–38

    Article  CAS  Google Scholar 

  2. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 1979, 277, 637–638

    Article  CAS  Google Scholar 

  3. T. Kawai, T. Sakata, Nature, 1980, 286, 474–476.

    Article  CAS  Google Scholar 

  4. For example: D. Stíbal, J. Sá, J. A. van Bokhoven, Catal. Sci. Technol., 2013, 3, 94–98

    Article  Google Scholar 

  5. S. D. Senanayake, H. Idriss, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1194–1198.

    Article  CAS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 2001, 293, 269.

    Article  CAS  Google Scholar 

  7. S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, C. B. Mullins, Nano Lett., 2012, 12, 26–32.

    Article  CAS  Google Scholar 

  8. B. O’Regan, M. Grätzel, Nature, 1991, 353, 737–740

    Article  Google Scholar 

  9. M. Grätzel, Nature, 2001, 414, 338–344.

    Article  Google Scholar 

  10. O. Bräm, A. Cannizzo, M. Chergui, Phys. Chem. Chem. Phys., 2012, 14, 7934–7937.

    Article  Google Scholar 

  11. A. Hagfeldt, M. Grätzel, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  12. A. V. Barzykin, M. Tachiya, J. Phys. Chem. B, 2002, 106, 4356–4363

    Article  CAS  Google Scholar 

  13. J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B, 2001, 105, 11194–11205.

    Article  Google Scholar 

  14. J. Szarko, A. Neubauer, A. Bartelt, L. Socaciu-Siebert, F. Brikner, K. Schwarzburg, R. Eichberger, J. Phys. Chem. C, 2008, 112, 10542–10552

    Article  CAS  Google Scholar 

  15. C. She, N. A. Anderson, J. Guo, F. Liu, W.-H. Goh, D.-T. Chen, D. L. Mohler, Z.-Q. Tian, J. T. Hupp, T. Lian, J. Phys. Chem. B, 2005, 109, 19345–19355

    Article  CAS  Google Scholar 

  16. N. A. Anderson, T. Lian, Annu. Rev. Phys. Chem., 2005, 56, 491–519.

    Article  CAS  Google Scholar 

  17. Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, Phys. Chem. Chem. Phys., 2007, 9, 1453–1460.

    Article  CAS  Google Scholar 

  18. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, J. Am. Chem. Soc., 2001, 123, 1613–1624.

    Article  CAS  Google Scholar 

  19. A. Yamakata, T. Ishibashi, H. Onishi, J. Phys. Chem. B, 2001, 105, 7258–7262

    Article  CAS  Google Scholar 

  20. J. B. Asbury, E. Hao, Y. Wang, H. N. Gosh, T. Lian, J. Phys. Chem. B, 2001, 105, 4545–4557

    Article  CAS  Google Scholar 

  21. S. H. Szczepankiewicz, J. A. Moss, M. R. Hoffmann, J. Phys. Chem. B, 2002, 106, 7654–7658

    Article  CAS  Google Scholar 

  22. R. Nakamura, A. Imanishi, K. Murakoshi, Y. Nakato, J. Am. Chem. Soc., 2003, 125, 7443–7450.

    Article  CAS  Google Scholar 

  23. G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, J. Phys. Chem. B, 2002, 106, 11716

    Article  CAS  Google Scholar 

  24. E. Hendry, F. Wang, J. Shan, T. F. Heinz, M. Bonn, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 69, 081101–081103

    Article  Google Scholar 

  25. S. R. Nagel, S. E. Schnatterly, Phys. Rev. B: Condens. Matter Mater. Phys., 1974, 9, 1299–1303.

    Article  CAS  Google Scholar 

  26. J. Sá, P. Friedli, R. Geiger, P. Lerch, M. H. Rittmann-Frank, C. J. Milne, J. Szlachetko, F. G. Santomauro, J. A. van Bokhoven, M. Chergui, M. Rossi, H. Sigg, Analyst, 2013, 138, 1966–1970.

    Article  Google Scholar 

  27. L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, H. Sigg, Rev. Sci. Instrum., 2011, 82, 063101–063109.

    Article  Google Scholar 

  28. J. Nelson, A. M. Eppler, I. M. Ballard, J. Photochem. Photobiol., A, 2002, 148, 25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Sigg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedli, P., Sigg, H. & Sá, J. Dye-injected electron trapping in TiO2 determined by broadband transient infrared spectroscopy. Photochem Photobiol Sci 13, 1393–1396 (2014). https://doi.org/10.1039/c4pp00152d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00152d

Navigation