Skip to main content
Log in

Differentiation between bioavailable and total hazard potential of sediment-induced DNA fragmentation as measured by the comet assay with Zebrafish embryos

  • Research Article
  • Controversies and Solutions in Environmental Sciences (Editor: Henner Hollert)
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Goals, Scope and Background

While water quality strongly improved over decades in the Rhine River, sediments still reflect elapsed contaminations of organic pollutants and heavy metals. In comparing genotoxic effects induced by both sediment extracts and whole sediments, a ratio of bioavailable toxicity and total extractable toxicity is obtained. Since contaminated sites whose contaminants are toxic and as well bioavailable present an elevated risk to the ecosystem, such ratios may be used as a warning signal to identify sites of primary concern.

Methods

Accordingly, two different exposure scenarios were compared to reveal the genotoxic potential of 18 sediment samples derived from 9 sample sites along the River Rhine. For assessment of effects on genome integrity, DNA fragmentation was measured using the comet assay with primary cells isolated from zebrafish embryos previously exposed to either organic sediment extracts or freeze-dried sediments at sublethal concentrations. Additionally, chemical data were used to determine responsible pollutants and correlate them with biological effects.

Results

Whereas 17 out of 18 sediment extracts caused significant DNA damage to the embryo cells, only 4 native sediments showed a genotoxic potential. Thus, under field-like exposure conditions, a major part of potentially genotoxic compounds seem to remain particle-bound and ineffective, as shown for whole sediment exposure. Conversely, the organic extracts seem to contain enriched concentrations even of hardly soluble substances. Hence, organic extracts may be used as a screening tool to address potentially polluted sites, even though the relevance of these results for the field situation may be questionable. Investigations on native sediments determined few sites with bioavailable and therefore ecologically most relevant genotoxic sediment compounds.

Discussion

However, these results may underestimate the total hazard potential of sample sites with hardly bioavailable substances. Chemical data revealed a variety of anthropogenic pollutants, ranging from PAHs to heavy metals. Nevertheless, chemical data on the measured priority pollutants did not fully explain the pollution pattern of the bioassays but clearly determined substances of concern (e.g., HCB, heavy metals) in particular sample sites.

Conclusions

There is a striking advantage in assessing the genotoxicity by means of different exposure scenarios that focus on either bioavailable or extractable fractions, as the combination of the results allows obtaining information on specific properties of the genotoxicants and their bioavailability. An additional correlation with chemical data should be required to identify priority pollutants, as long as the responsible contaminant is known a priori. As many studies revealed inherent failures of such a correlation, an effect-driven analysis of pollutants is recommended as a promising tool to identify even non-priority pollutants by means of their ecotoxicological effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlf W, Braunbeck T, Heise S, Hollert H (2002a): Sediment and Soil Quality Criteria. In: Burton F, McKelvie I, Förstner U, Guenther A (eds), Environmental Monitoring Handbook. McGraw-Hill, New York, pp 17.1–17.18

    Google Scholar 

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002b): A guidance for the assessment and evaluation of sediment quality: A German approach based on ecotoxicological and chemical measurements. J Soils Sediments 2, 37–42

    CAS  Google Scholar 

  • Babich H, Shopsis C, Borenfreund E (1986): In vitro cytotoxicity testing of aquatic pollutants (cadmium, copper, zinc, nickel) using established fish cell lines. Ecotoxicol Environ Saf 11, 91–99

    Article  CAS  Google Scholar 

  • Babut M, Oen A, Hollert H, Apitz S, Heise S (2007): Prioritization at River Basin Scale, Risk Assessment at Site-specific scale: Suggested approaches, Chapter 4. In: Heise S (ed), Sustainable management of sediment resources. Volume 3-Sediment risk management & communication. Elsevier, Amesterdam, pp 107–152

    Google Scholar 

  • Barber TR, Fuchsmann PC, Chappie DJ, Sferrs JC, Newton FC, Sheehan PJ (1997): Toxicity of Hexachlorobenzene to Hyalella azteca and Chironomus tentans in spiked sediment bioassays. Environ Toxicol Chem 16, 1716–1720

    Article  CAS  Google Scholar 

  • Biselli S, Reineke N, Heinzel N, Kammann U, Franke S, Huhnerfuss H, Theobald N (2005): Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea, Part I: Determination and identification of organic pollutants. J Soils Sediments 5, 171–181

    Article  CAS  Google Scholar 

  • Brack W, Schirmer K, Erdinger L, Hollert H (2005): Effect-directed analysis of mutagens and ethoxyresorufin-o-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24, 2445–2458

    Article  CAS  Google Scholar 

  • Brack W, Klamer HJC, de Alda ML, Barceló D (2007): Effect-directed analysis of key toxicants in European river basins. A review. Env Sci Pollut Res 14, 30–38

    Article  CAS  Google Scholar 

  • Braunbeck T, Böttcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005): Towards an alternative for the acute fish LC50 test in chemical assessment: The fish embryo toxicity test goes multi-species-An update. ALTEX 22, 87–102

    Google Scholar 

  • Burton GA (1991): Assessing the toxicity of freshwater sediments. Environ Toxicol Chem 10, 1585–1627

    Article  CAS  Google Scholar 

  • Canonero R, Campart GB, Mattioli F, Robbiano L, Martelli A (1997): Testing of p-dichlorobenzene and hexachlorobenzene for their ability to induce DNA damage and micronucleus formation in primary cultures of rat and human hepatocytes. Mutagenesis 12, 35–39

    Article  CAS  Google Scholar 

  • Chapman PM, Hollert H (2006): Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6, 4–8

    Article  Google Scholar 

  • Chen G, White PA (2004): The mutagenic hazards of aquatic sediments: A review. Mutat Res 567, 151–225

    Article  CAS  Google Scholar 

  • Cheng SH, Wai AWK, So CH, Wu RSS (2000): Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ Toxicol Chem 19, 3024–3031

    Article  CAS  Google Scholar 

  • Claus E, Tippmann P, Heininger (2002): Application of differential investigational methods for sediment evaluation. UWSF-Z Umweltchem Ökotox 14, 3–7

    CAS  Google Scholar 

  • Cotelle S, Ferard JF (1999): Comet assay in genetic ecotoxicology: A review. Environ Mol Mutagen 34, 246–255

    Article  CAS  Google Scholar 

  • Coughlan B, Hartl M, O’Reilly S, Sheehan D, Morthersill C, van Pelt F, O’Halloran J, O’Brien N (2002): Detecting genotoxicity using the Comet assay following chronic exposure of Manila clam Tapes semidecussatus to polluted estuarine sediments. Mar Pollut Bull, 1359–1365

  • Devaux A, Flammarion P, Bernardon V, Garric J, Monod G (1998): Monitoring of the chemical pollution of the river Rhone through measurement of DNA damage and cytochrome P4501A induction in chub (Leuciscus cephalus). Mar Environ Res 46, 257–262

    Article  CAS  Google Scholar 

  • DIN 38415-6 DIN-AK ‘Fischeitest’: Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung-Suborganismische Testverfahren (Gruppe T)-Bestimmung der nicht akut giftigen Wirkung von Abwasser auf die Entwicklung von Fischeiern (T6)

  • EC 2006: Commission of the European Communities. Proposal for a directive of the European Parliament and of the council on environmental quality standards in the field of water policy and amending Directive 2000/60/EC. http://ec.europa.eu/environment/water/water-dangersub/pdf/com_2006_397_en.pdf, Brussels

  • Ehlers GA, Loibner AP (2006): Linking organic pollutant (bio)-availability with geosorbent properties and biomimetic methodology: A review of geosorbent characterisation and (bio)availability prediction. Environ Pollut 141, 494–512

    Article  CAS  Google Scholar 

  • Engwall M, Brunstrom B, Naf C, Hjelm K (1999): Levels of dioxin-like compounds in sewage sludge determined with a bioassay based on EROD induction in chicken embryo liver cultures. Chemosphere 38, 2327–2343

    Article  CAS  Google Scholar 

  • Fairbairn DW, Olive PL, O’Neill KL (1995): The comet assay: A comprehensive review. Mutat Res 339, 37–59

    CAS  Google Scholar 

  • Foerstner U (2002): Sediments and the European Water Framework Directive. J Soils Sediments 2, 54

    Google Scholar 

  • Geffard O, Budzinski H, Augagneur S, Seaman MN, His E (2001): Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas). Environ Toxicol Chem 20, 1605–11

    Article  CAS  Google Scholar 

  • Geffard O, His E, Budzinski H, Chiffoleau JF, Coynel A, Etcheber H (2004): Effects of storage method and duration on the toxicity of marine sediments to embryos of Crassostrea gigas oysters. Environ Pollut 129, 457–65

    Article  CAS  Google Scholar 

  • Greve PA (1986): Environmental and human exposure to hexachlorobenzene in the Netherlands. In: Morris CR, Cabral JRP (eds), Hexachlorobenzene: proceedings of an international symposium. International Agency for Research on Cancer, Lyon, pp 87–97

    Google Scholar 

  • Heise S (2004): Inventory of historical contaminated sediment in Rhine Basin and its tributaries. Technical University of Hamburg Harburg, Hamburg

    Google Scholar 

  • Heise S, Foerstner U (2007): Risks from historical contaminated sediments in the Rhine basin. Water Air Soil Pollut, online first: 10.1007/s11267-006-9047-0

  • Hilscherova K, Dusek L, Kubik V, Hofman J, Cupr P, Klánová J, Holoubek I (2007): Redistribution of Organic Pollutants in River Sediments and Alluvial Soils Related to Major Floods. J Soils Sediments 7, 167–177

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T (2000): Cytotoxicity of settling particulate matter and sediments of the Neckar river (Germany) during a winter flood. Environ Toxicol Chem 19, 528–534

    Article  CAS  Google Scholar 

  • Hollert H, Heise S, Pudenz S, Brüggemann R, Ahlf W, Braunbeck T (2002a): Application of a Sediment Quality Triad and Different Statistical Approaches (Hasse Diagrams and Fuzzy Logic) for the Comparative Evaluation of Small Streams. Ecotoxicology 11, 311–321

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003): A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3, 197–207

    Google Scholar 

  • Hollert N, Dürr M, Olsman H, Halldin K, van Bavel E, Brack W, Tysklind M, Engwall M, Braunbeck T (2002b): Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the river Neckar. Ecotoxicology 11, 323–36

    Article  CAS  Google Scholar 

  • IKSR 2005: Internationale Kommission zum Schutz des Rheins: International river basin district Rhine. Characteristics, examination of the environmental impact of human activities and economic analysis of water uses. http://www.iksr.org/fileadmin/user_upload/Dokumente/Rheinkarten/cc_02-05d_rev._18.03.05_online.pdf

  • Kammann U, Biselli S, Reineke N, Wosniok W, Danischewski D, Huehnerfuss H, Kinder A, Sierts-Herrmann A, Theobald N, Vahl H-H, Vobach M, Westendorf J, Steinhart H (2005): Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea-Part II: Results of the biotest battery and development of a biotest index. J Soils Sediments 5, 225–232

    Article  Google Scholar 

  • Kammann U, Riggers JC, Theobald N, Steinhart H (2000): Genotoxic potential of marine sediments from the North Sea. Mutat Res 467, 161–168

    CAS  Google Scholar 

  • Kammann U, Bunke M, Steinhart H, Theobald N (2001): A permanent fish cell line (EPC) for genotoxicity testing of marine sediments with the comet assay. Mutat Res 498, 66–77

    Google Scholar 

  • Keiter S, Rastall A, Kosmehl T, Erdinger L, Braunbeck T, Hollert H (2006): Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube river. A pilot study in search for the causes for the decline of fish catches. Env Sci Pollut Res 13, 308–319

    Article  CAS  Google Scholar 

  • Kostanjsek R, Lapanje A, Drobne D, Perovic S, Perovic A, Zidar P, Strus J, Hollert H, Karaman G (2005): Bacterial community structure analyses to assess pollution of water and sediments in the Lake Shkodra/Skadar, Balkan Peninsula. Env Sci Pollut Res 12, 361–368

    Article  CAS  Google Scholar 

  • Kilemade MF, Hartl MG, Sheehan D, Mothersill C, Van Pelt FN, O’Halloran J, O’Brien NM (2004): Genotoxicity of field-collected inter-tidal sediments from Cork Harbor, Ireland, to juvenile turbot (Scophthalmus maximus L.) as measured by the Comet assay. Environ Mol Mutagen 44, 56–64

    Article  CAS  Google Scholar 

  • Kocan RM, Sabo KM, Landolt ML (1985): Cytotoxicity / Genotoxicity: The Application of Cell Culture Techniques to The Measurement of Marine Sediment Pollution. Aquatic Toxicol 6, 165–177

    Article  CAS  Google Scholar 

  • Kosmehl T, Krebs F, Manz W, Erdinger L, Braunbeck T, Hollert H (2004): Comparative genotoxicity testing of Rhine river sediment extracts using the comet assay with permanent fish cell lines (RTG-2 and RTL-W1) and the Ames test. J Soils Sediments 4, 84–94

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006): A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25, 2097–2106

    Article  CAS  Google Scholar 

  • Lachmund C, Köcher B, Manz W, Heininger P (2003): Chemical and microbiological in situ characterization of benthic communities in sediments with different contamination levels. J Soils Sediments 3, 188–196

    CAS  Google Scholar 

  • Lee RF, Steinert S (2003): Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544, 43–64

    Article  CAS  Google Scholar 

  • Marvin CH, McCarry BE, Villella J, Allan LM, Bryant DW (2000): Chemical and biological profiles of sediments as indicators of sources of contamination in Hamilton Harbour. Part II: Bioassay-directed fractionation using the Ames Salmonella/microsome assay. Chemosphere 41, 989–999

    Article  CAS  Google Scholar 

  • Matsui M, Kashima Y, Kawano M, Matsuda M, Ambe K, Wakimoto T, Doi R (2003): Dioxin-like potencies and extractable organohalogens (EOX) in medical, municipal and domestic waste incinerator ashes in Japan. Chemosphere 53, 971–980

    Article  CAS  Google Scholar 

  • McKelvey-Martin VJ, Green MHL, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A (1993): The single cell gel electrophoresis assay (comet assay): A European review. Mutat Res 288, 47–63

    CAS  Google Scholar 

  • Mitchelmore CL, Chipman JK (1998): DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res 399, 135–47

    CAS  Google Scholar 

  • Mizell M, Romig ES (1997): The aquatic vertebrate embryo as a sentinel for toxins: zebrafish embryo dechorionation and perivitelline space microinjection. Int J Dev Biol 41, 411–423

    CAS  Google Scholar 

  • Olive PL, Banath JP, Durand RE (1990): Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the ‘comet’ assay. Radiat Res 122, 86–94

    Article  CAS  Google Scholar 

  • Pandrangi R, Petras M, Ralph S, Vrzoc M (1995): Alkaline single cell gel (comet) assay and genotoxicity monitoring using bullheads and carp. Environ Mol Mutagen 26, 345–356

    Article  CAS  Google Scholar 

  • Power EA, Chapman PM (1992): Assessing sediment quality. In: Burton GA (ed), Sediment toxicity assessment. Lewis-Publishers, Boca Raton, pp 1–18

    Google Scholar 

  • Rajaguru P, Suba S, Palanivel M, Kalaiselvi K (2003): Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environ Mol Mutagen 41, 85–91

    Article  CAS  Google Scholar 

  • Reifferscheid G, Grummt T (2000): Genotoxicity in German surface waters-Results of a collaborative study. Water Air Soil Poll 123, 67–79

    Article  CAS  Google Scholar 

  • Rippen GH (1994): Handbuch Umweltchemikalien, 24. Ergänzungslieferung 5/94

  • Schnurstein A, Braunbeck T (2001): Tail moment versus tail length-Application of an in vitro version of the comet assay in biomonitoring for genotoxicity in native surface waters using primary hepatocytes and gill cells from zebrafish (Danio rerio). Ecotox Environ Saf 49, 187–196

    Article  CAS  Google Scholar 

  • Schuytema GS, Nebeker AV, Griffis WL, Miller CE (1989): Effects of freezing on toxicity of sediment contaminated with DDT and Endrin. Environmental Toxicology and Chemistry 8, 883–891

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006): The challenge of micro-pollutants in aquatic systems. Science 313, 1072–1077

    Article  CAS  Google Scholar 

  • Seitz N, Keiter S, Böttcher M, Kosmehl T, Manz W, Hollert H, Braunbeck T (2007): Evaluation of the genotoxic potential of sediment samples from the Danube River using a new expert system and several analyzing methods: How to integrate information from dose-response curves. Mutat Res (submitted)

  • Siekel P, Chalupa I, Beno J, Blasko M, Novotný J, Burian J (1991): A genotoxicological study of hexachlorobenzene and pentachloroanisole. Teratog. Carcinog Mutagen 50–60

  • Sina JF, Bean CL, Dysart GR, Taylor VI, Bradley MO (1983): Evaluation of the alkaline elution/rat hepatocyte assay as a predictor of carcinogenic/mutagenic potential. Mutat Res 113, 357–391

    CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988): A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175, 184–191

    Article  CAS  Google Scholar 

  • Speit G, Hartmann A (1995): The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10, 555–559

    Article  CAS  Google Scholar 

  • Sundberg H, Ishaq R, Akerman G, Tjarnlund U, Zebuhr Y, Linderoth M, Broman D, Balk L (2005): A bio-effect directed fractionation study for toxicological and chemical characterization of organic compounds in bottom sediment. Toxicol Sci 84, 63–72

    Article  CAS  Google Scholar 

  • Tye R, Rich J, Lick W (1995): Effects of colloids, flocculation, particle size, and organic matter on the adsorption of hexachlorobenzene to sediments. Environ Toxicol Chem 15, 643–651

    Article  Google Scholar 

  • Ulrich M, Schulze T, Leist E, Glaß B, Maier M, Maier D, Braunbeck T, Hollert H (2002): Ecotoxicological assessment of sediments and suspended particulate matter-Potential risk of ground-water contamination and correlation of different exposure routes (organic extract, whole sediment) in the bacterial contact assay and the fish egg assay. UWSF-Z Umweltchem Ökotox 14, 132–137

    CAS  Google Scholar 

  • Weber J, Kreutzmann J, Plantikow A, Pfitzner S, Claus E, Manz W, Heininger P (2006): A novel particle contact assay with the yeast Saccharomyces cerevisiae for ecotoxicological assessment of freshwater sediments. J Soils Sediments 6, 84–91

    Article  CAS  Google Scholar 

  • White PA, Robitaille S, Rasmussen JB (1999): Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (Pimephales promelas). Environ Toxicol Chem 18, 1843–1847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Kosmehl or Henner Hollert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmehl, T., Krebs, F., Manz, W. et al. Differentiation between bioavailable and total hazard potential of sediment-induced DNA fragmentation as measured by the comet assay with Zebrafish embryos. J Soils Sediments 7, 377–387 (2007). https://doi.org/10.1065/jss2007.11.261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/jss2007.11.261

Keywords

Navigation