Skip to main content
Log in

Viscosity–Temperature Properties of Model Oil Systems Rich in Asphaltenes and Paraffins

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper describes a comparative assessment of viscosity–temperature curves for a number of model mixtures prepared from crude oil maltenes isolated from unstable oils (with island-type asphaltenes) and stable oils (with archipelago-type asphaltenes) with the addition of 5 wt % of individual n-alkanes (C10 or C23) and/or asphaltenes (native or foreign). All the viscosity–temperature curves consist of two distinct regions, namely a low-temperature region (10–30°C) and a high-temperature region (30–50°C), within which the behavior of oil systems is governed by the presence of solid paraffin crystals and the aggregation state of asphaltenes, respectively. It is assumed that, at high temperatures, the most critical factors responsible for the viscosity–temperature properties of oil systems are the asphaltene structural type (island or archipelago) and the propensity of the asphaltenes to flocculation or paraffin–asphaltene aggregation. It is further demonstrated that the flocculation of asphaltenes is accompanied by the entrapment of n-alkanes contained in the dispersion medium, and that the amounts trapped by island-type asphaltenes are higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abivin, P., Taylor, S.D., and Freed, D., Energy Fuel, 2012, vol. 26, no. 6, pp. 3448–3461. https://doi.org/10.1021/ef300065h

    Article  CAS  Google Scholar 

  2. Ilyin, S.O., Arinina, M.P., Polyakova, M.Y., Kulichikhin, V.G., and Malkin, A.Y., Fuel, 2016, vol. 186, pp. 157–167. https://doi.org/10.1016/j.fuel.2016.08.072

    Article  CAS  Google Scholar 

  3. Visintin, R.F.G., Lapasin, R., Vignati, E., D’Antona, P., and Lockhart, T.P., Langmuir, 2005, vol. 21, no. 14, pp. 6240–6249. https://doi.org/10.1021/la050705k

    Article  CAS  PubMed  Google Scholar 

  4. Malkin, A.Y., Petrol. Chem., 2019, vol. 59, pp. 1092–1107. https://doi.org/10.1134/S0965544119100062

    Article  CAS  Google Scholar 

  5. Aref, A.M., Fuel, 2022, vol. 316. Article 123372. https://doi.org/10.1016/j.fuel.2022.123372

  6. Li, X., Chi, P., Guo, X., and Sun, Q., Fuel, 2019, vol. 255. Article 115825. https://doi.org/10.1016/j.fuel.2019.115825

  7. Mullins, O.C., Betancourt, S.S., Cribbs, M.E., Dubost, F.X., Creek, J.L., Andres, A.B., and Venkataramanan, L., Energy Fuel, 2007, no. 21, pp. 2785–2794.

  8. Lei, Y., Li, S., Liu, X., Wang, H., Zhu, H., Gao, Y., Peng, H., and Yu, P., J. Mol. Liq., 2022, vol. 365. Article 120132. https://doi.org/10.1016/j.molliq.2022.120132

  9. D’Avila, F.G., Silva, C.M.F., Steckel, L., Ramos, A.C.S., and Lucas, E.F., Energy Fuel, 2020, vol. 34, no. 4, pp. 4095–4105. https://doi.org/10.1021/acs.energyfuels.9b04166

    Article  CAS  Google Scholar 

  10. Kriz, P. and Andersen, S.I., Energy Fuel, 2005, vol. 19, no. 3, pp. 948–953. https://doi.org/10.1021/ef049819e

  11. Tinsley, J.F., Jahnke, J.P., Dettman, H.D., and Prud’home, R.K., Energy Fuel, 2009, vol. 23, no. 4, pp. 2056–2064. https://doi.org/10.1021/acs.energyfuels.8b00664

  12. Xue, H., Zhang, J., Han, S., Sun, M., Yan, X., and Li, H., Energy Fuel, 2019, vol. 33, no. 10, pp. 9570–9584. https://doi.org/10.1021/acs.energyfuels.9b01825

  13. Ariza, E., Chaves-Guerrero, A., and Molina, V.D., Energy Fuel, 2018, vol. 32, no. 6, pp. 6557–6564. https://doi.org/10.1021/acs.energyfuels.8b00664

  14. Ganeeva, Y.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, pp. 993–1008. https://doi.org/10.1070/rc2011v080n10abeh004174

    Article  CAS  Google Scholar 

  15. Kayukova, G.P., Petrov, S.M., and Uspenskii, B.V., Svoistva tyazhelykh neftei i bitumov permskikh otlozhenii Tatarstana v prirodnykh i tekhnogennykh protsessakh (Properties of Heavy Oils and Bitumens from the Permian Deposits of Tatarstan in Natural and Technogenic Processes), Moscow: GEOS, 2015.

  16. Indad, Sh.S., Mukhamatdinov, I.I., Garifullina, E.I., and Vakhin, A.V., Neftegaz.RU., 2018, no. 4, pp. 102–106.

    Google Scholar 

  17. Abryutina, N.N., Abushaeva, V.V., Aref’ev, O.A., et al., Sovremennye metody issledovaniya neftei: Spravochno-metodicheskoe posobie (Modern Methods for Researching Oils: Reference Manual), Abryutin, N.N., Ed., Leningrad: Nedra, 1984.

  18. Barskaya, E.E., Okhotnikova, E.S., Ganeeva, Y.M., and Yusupova, T.N., Petrol. Sci. Technol., 2023, vol. 41, no. 2, pp. 159–175. https://doi.org/10.1080/10916466.2022.2059083

    Article  CAS  Google Scholar 

  19. Yusupova, T.N., Ganeeva, Yu.M., Romanov, G.V., and Barskaya, E.E., Fiziko-khimicheskie protsessy v produktivnykh neftyanykh plastakh (Physical and Chemical Processes in Productive Oil Reservoirs), Moscow: Nauka, 2015.

  20. Unger, F.G. and Andreeva, L.N., Fundamental’nye aspekty khimii nefti. Priroda smol i asfal’tenov (Fundamental Aspects of Oil Chemistry. Nature of Resins and Asphaltenes), Novosibirsk: Nauka. Sibir. Izd. Firma RAN, 1995.

  21. Tagirzyanov, M.I., Yakubov, M.R., and Romanov, G.V., J. Canad. Petrol. Technol., 2007, vol. 46, no. 9, pp. 1–5. https://doi.org/10.2118/2004-045

    Article  Google Scholar 

  22. Wu, J. and Xu, Y., Fluid Phase Equilib., 2019, vol. 490, pp. 22–32.

    Article  CAS  Google Scholar 

  23. Mousavi, M., Abdollahi, T., Pahlavan, F., and Fini, E.H., Fuel, 2016, vol. 183, pp. 262–271. https://doi.org/10.1016/J.FUEL.2016.06.100

    Article  CAS  Google Scholar 

  24. Tinsley, J.F., Jahnke, J.P., Dettman, H.D., and Prud’home, R.K., Energy Fuel, 2009, vol. 23, no. 4, pp. 2056–2064

    Article  CAS  Google Scholar 

  25. Freund, M., Csikós, R., Keszthelyi, S., and Mózes, G.Y.I., Chemical, Crystallographical and Physical Properties of Liquid Paraffins and Paraffin Waxes, in Paraffin Products Properties, Technologies, Applications, 1982, vol. 5, pp. 13–140. https://doi.org/10.1016/S0376-7361(08)70146-8

  26. Tukhvatullina, A.Z., Barskaya, E.E., Kouryakov, V.N., Ganeeva Yu.M., Yusupova, T.N., and Romanov, G.V., J. Petrol. Environ. Biotechnol., 2013, vol. 4. https://doi.org/10.4172/2157-7463.1000152

Download references

ACKNOWLEDGMENTS

The authors are grateful to the researchers of the Multiple-Access Spectro-Analytical Center for Physical-Chemical Study of Structure, Properties and Composition of Substances and Materials, FRC Kazan Scientific Center of RAS, for their kind cooperation in the IR and EPR spectroscopy examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Barskaya.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barskaya, E.E., Ganeeva, Y.M., Okhotnikova, E.S. et al. Viscosity–Temperature Properties of Model Oil Systems Rich in Asphaltenes and Paraffins. Pet. Chem. 63, 128–137 (2023). https://doi.org/10.1134/S0965544123020160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123020160

Keywords:

Navigation