Skip to main content
Log in

MD studies on conformational behavior of a DNA photolyase enzyme

  • Radiobiology, Ecology and Nuclear Medicine
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In this work, molecular dynamics (MD) simulations were performed on a DNA photolyase protein with two cofactors, FAD (flavin adenine dinucleotide) and MTHF (methenyltetrahydrofolate), inside the enzyme pocket. A DNA photolyase is a highly efficient light-driven enzyme that repairs the UV-induced cyclobutane-pyrimidine dimer in damaged DNA. We were aimed to compare the conformational changes of the FAD cofactor and other constituent fragments of the molecular system under consideration. The conformational behavior of the FAD molecule is very important for understanding the functional and structural properties of the DNA repair protein photolyase. The photoactive FAD is an essential cofactor both for specificial binding to damaged DNA and for catalysis. The second chromophore (MTHF or 8-HDF) is not necessary for catalysis and has no effect on specific enzyme—substrate binding. The obtained results were discussed to gain insight into the light-driven mechanism of DNA repair by a DNA photolyase enzyme—based on the enzyme structure, the FAD mobility, and conformation shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gleiser, “From cosmos to intelligent life: The four ages of astrobiology,” http://arxiv.org/abs/1202.5042.

  2. A. Sancar, Chem. Rev. 103, 2203–2237 (2003).

    Article  Google Scholar 

  3. T. Tamada, et al., Nat. Struct. Biol. 4(11), 887–891 (1997); doi: 10.1038/nsb1197-887.

    Article  Google Scholar 

  4. J. Antony, D. Medvedev, and A. Stuchebrukhov, J. Am. Chem. Soc. 122, 1057–1065 (2000).

    Article  Google Scholar 

  5. A. Mees, et al., Science 306, 1724 (2004); doi: 10.1126/science.1101598.

    Article  Google Scholar 

  6. I. Oberpichler, et al., PLoS ONE 6(10), P.e26775 (2011); doi: 10.1371/journal.pone.0026775.

    Article  ADS  Google Scholar 

  7. J. I. Lucas-Lledó and M. Lynch, Mol. Biol. Evol. 26(5), 1143–1153 (2009); doi: 10.1093/molbev/msp029.

    Article  Google Scholar 

  8. C. P. Selby and A. Sancar, PNAS 103(47), 17696–17700 (2006); doi: 10.1073/pnas.0607993103.

    Article  ADS  Google Scholar 

  9. F. Liu, et al., Sensors 8, 8453–8462 (2008); doi: 10.3390/s8128453.

    Article  Google Scholar 

  10. J. Hahn, M.-E. Michel-Beyerle, and N. Rosch, J. Mol. Model. 4, 73–82 (1998); doi: 10.1007/s008940050133.

    Article  Google Scholar 

  11. P. A. Karplus and G. E. Schulz, J. Mol. Biology 195(3), 701–729 (1987); http://dx.doi.org/10.1016/0022-2836(87)90191-4.

    Article  Google Scholar 

  12. C. L. Thompson and A. Sancar, Oncogene 21, 9043–9056 (2002).

    Article  Google Scholar 

  13. P. K. Verma and S. K. Pal, Eur. Phys. J. D 60, 137–156 (2010).

    Article  ADS  Google Scholar 

  14. H.-W. Park, et al., Science 268, 1866 (1995).

    Article  ADS  Google Scholar 

  15. Guobin Luo, et al., J. Phys. Chem. B 110(19), 9363–9367 (2006).

    Article  Google Scholar 

  16. Y. Wang, P. P. Gasper, and J. S. Taylor, J. Am. Chem. Soc. 122, 5510 (2000).

    Article  Google Scholar 

  17. F. Masson, et al., Chem. Phys. Chem. 10, 400–410 (2009).

    Article  Google Scholar 

  18. D. A. Pearlman, et al., Comp. Phys. Commun. 91, 1–41 (1995).

    Article  ADS  MATH  Google Scholar 

  19. D. C. Case, et al., AMBER, 2010.

    Google Scholar 

  20. U. Essmann, et al., J. Chem. Phys. 103, 8577–8592 (1995).

    Article  ADS  Google Scholar 

  21. K. Kholmurodov, et al., J. Comp. Chem. 21(13), 1187–1191 (2000).

    Article  Google Scholar 

  22. J. W. Ponder and D. A. Case, Adv. Prot. Chem. 66, 27–85 (2003).

    Article  Google Scholar 

  23. W. D. Cornell, et al., J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  Google Scholar 

  24. W. L. Jorgensen, J. Chandrasekhar, and J. D. Madura, J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  Google Scholar 

  25. H. J. C. Berendsen, et al., J. Chem. Phys. 81, 3684–3690 (1984).

    Article  ADS  Google Scholar 

  26. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327–341 (1997).

    Article  ADS  Google Scholar 

  27. R. A. Sayle and E. J. Milner-White, “RasMol: biomolecular graphics for all,” Trends in Biochem. Sci. 20, 374–376 (1995).

    Article  Google Scholar 

  28. R. Koradi, M. Billeter, and K. Wuthrich, J. Mol. Graphics 4, 51–55 (1996).

    Article  Google Scholar 

  29. W. Humphrey, A. Dalke, and K. Schulten, “VMD—visual molecular dynamics,” Ibid., 33–38.

  30. T. Mirzadegan, et al., Biochemistry 42, 2759–2767 (2003).

    Article  Google Scholar 

  31. U. Gether and B. K. Kobilka, J. Biol. Chem. 273, 17979–17982 (1998).

    Article  Google Scholar 

  32. K. Palczewski, et al., Science 289, 739–745 (2000).

    Article  ADS  Google Scholar 

  33. T. Okada, et al., J. Mol. Biol. 342, 571–583 (2004).

    Article  Google Scholar 

  34. G. F. J. Salgado, et al., Biochemistry 43, 12819–12828 (2004).

    Article  Google Scholar 

  35. D. C. Teller, et al., Biochemistry 40, 7761–7772 (2001).

    Article  Google Scholar 

  36. Kh. T. Kholmurodov, T. B. Feldman, and M. A. Ostrovskii, Neuroscience and Behavioral Physiology 37(2), 161–174 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dushanov, E., Kholmurodov, K., Yasuoka, K. et al. MD studies on conformational behavior of a DNA photolyase enzyme. Phys. Part. Nuclei Lett. 10, 597–605 (2013). https://doi.org/10.1134/S1547477113060101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477113060101

Keywords

Navigation