Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 9, 2005

How to find small non-coding RNAs in bacteria

  • Jörg Vogel and Cynthia Mira Sharma
From the journal Biological Chemistry

Abstract

Small non-coding RNAs (sRNAs) have attracted considerable attention as an emerging class of gene expression regulators. In bacteria, a few regulatory RNA molecules have long been known, but the extent of their role in the cell was not fully appreciated until the recent discovery of hundreds of potential sRNA genes in the bacterium Escherichia coli. Orthologs of these E. coli sRNA genes, as well as unrelated sRNAs, were also found in other bacteria. Here we review the disparate experimental approaches used over the years to identify sRNA molecules and their genes in prokaryotes. These include genome-wide searches based on the biocomputational prediction of non-coding RNA genes, global detection of non-coding transcripts using microarrays, and shotgun cloning of small RNAs (RNomics). Other sRNAs were found by either co-purification with RNA-binding proteins, such as Hfq or CsrA/RsmA, or classical cloning of abundant small RNAs after size fractionation in polyacrylamide gels. In addition, bacterial genetics offers powerful tools that aid in the search for sRNAs that may play a critical role in the regulatory circuit of interest, for example, the response to stress or the adaptation to a change in nutrient availability. Many of the techniques discussed here have also been successfully applied to the discovery of eukaryotic and archaeal sRNAs.

:

Corresponding author

References

Aarons, S., Abbas, A., Adams, C., Fenton, A., and O'Gara, F. (2000). A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J. Bacteriol.182, 3913–3919.10.1128/JB.182.14.3913-3919.2000Search in Google Scholar

Ali, A.T., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol.181, 6361–6370.Search in Google Scholar

Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow, L., and Storz, G. (1997). A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell90, 43–53.10.1016/S0092-8674(00)80312-8Search in Google Scholar

Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., et al. (2003). A uniform system for microRNA annotation. RNA9, 277–279.10.1261/rna.2183803Search in Google Scholar

Ando, Y., Asari, S., Suzuma, S., Yamane, K., and Nakamura, K. (2002). Expression of a small RNA, BS203 RNA, from the yocIyocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett.207, 29–33.10.1016/S0378-1097(01)00551-1Search in Google Scholar

Antal, M., Bordeau, V., Douchin, V., and Felden, B. (2005). A small bacterial RNA regulates a putative ABC transporter. J. Biol. Chem.280, 7901–7908.10.1074/jbc.M413071200Search in Google Scholar

Argaman, L. and Altuvia, S. (2000). fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol.300, 1101–1112.10.1006/jmbi.2000.3942Search in Google Scholar

Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E.G.H., Margalit, H., and Altuvia, S. (2001). Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol.11, 941–950.10.1016/S0960-9822(01)00270-6Search in Google Scholar

Axmann, I.M., Kensche, P., Vogel, J., Kohl, S., Herzel, H., and Hess, W.R. (2005). Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol.6, R73.10.1186/gb-2005-6-9-r73Search in Google Scholar

Barrick, J.E., Sudarsan, N., Weinberg, Z., Ruzzo, W.L., and Breaker, R.R. (2005). 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA11, 774–784.10.1261/rna.7286705Search in Google Scholar

Bernstein, D.S., Buter, N., Stumpf, C., and Wickens, M. (2002). Analyzing mRNA-protein complexes using a yeast three-hybrid system. Methods26, 123–141.10.1016/S1046-2023(02)00015-4Search in Google Scholar

Blattner, F.R., Plunkett, G. III, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science277, 1453–1474.10.1126/science.277.5331.1453Search in Google Scholar

Brownlee, G.G. (1971). Sequence of 6S RNA of E. coli. Nat. New Biol.229, 147–149.10.1038/newbio229147a0Search in Google Scholar

Carter, R.J., Dubchak, I., and Holbrook, S.R. (2001). A computational approach to identify genes for functional RNAs in genomic sequences. Nucleic Acids Res.29, 3928–3938.10.1093/nar/29.19.3928Search in Google Scholar

Chen, S., Lesnik, E.A., Hall, T.A., Sampath, R., Griffey, R.H., Ecker, D.J., and Blyn, L.B. (2002). A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems65, 157–177.10.1016/S0303-2647(02)00013-8Search in Google Scholar

Chen, S., Zhang, A.X., Blyn, L.B., and Storz, G. (2004). MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol.186, 6689–6697.10.1128/JB.186.20.6689-6697.2004Search in Google Scholar

Christiansen, J.K., Larsen, M.H., Ingmer, H., Sogaard-Andersen, L., and Kallipolitis, B.H. (2004). The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J. Bacteriol.186, 3355–3362.10.1128/JB.186.11.3355-3362.2004Search in Google Scholar

Davis, B.M., Quinones, M., Pratt, J., Ding, Y., and Waldor, M.K. (2005). Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J. Bacteriol.187, 4005–4014.10.1128/JB.187.12.4005-4014.2005Search in Google Scholar

Ebeling, S., Kundig, C., and Hennecke, H. (1991). Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J. Bacteriol.173, 6373–6382.10.1128/jb.173.20.6373-6382.1991Search in Google Scholar

Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev.15, 188–200.10.1101/gad.862301Search in Google Scholar

Franze de Fernandez, M.T., Hayward, W.S., and August, J.T. (1972). Bacterial proteins required for replication of phage Q ribonucleic acid. Purification and properties of host factor I, a ribonucleic acid-binding protein. J. Biol. Chem.247, 824–831.10.1016/S0021-9258(19)45681-0Search in Google Scholar

Gaudin, C., Zhou, X., Williams, K.P., and Felden, B. (2002). Two-piece tmRNA in cyanobacteria and its structural analysis. Nucleic Acids Res.30, 2018–2024.10.1093/nar/30.9.2018Search in Google Scholar

Geissmann, T.A. and Touati, D. (2004). Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J.23, 396–405.10.1038/sj.emboj.7600058Search in Google Scholar

Göhlmann, H.W.H., Weiner, J., Schön, A., and Herrmann, R. (2000). Identification of a small RNA within the pdh gene cluster of Mycoplasma pneumoniae and Mycoplasma genitalium. J. Bacteriol.182, 3281–3284.10.1128/JB.182.11.3281-3284.2000Search in Google Scholar

Gottesman, S. (2004). The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol.58, 303–328.10.1146/annurev.micro.58.030603.123841Search in Google Scholar

Griffin, B.E. (1971). Separation of 32P-labelled ribonucleic acid components. The use of polyethylenimine-cellulose (TLC) as a second dimension in separating oligoribonucleotides of ‘4.5 S’ and 5 S from E. coli. FEBS Lett.15, 165–168.Search in Google Scholar

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S.R. (2003). Rfam: an RNA family database. Nucleic Acids Res.31, 439–441.10.1093/nar/gkg006Search in Google Scholar

Guigueno, A., Dassa, J., Belin, P., and Boquet, P.L. (2001). Oversynthesis of a new Escherichia coli small RNA suppresses export toxicity of DsbA′-PhoA unfoldable periplasmic proteins. J. Bacteriol.183, 1147–1158.10.1128/JB.183.4.1147-1158.2001Search in Google Scholar

Heeb, S., Blumer, C., and Haas, D. (2002). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J. Bacteriol.184, 1046–1056.10.1128/jb.184.4.1046-1056.2002Search in Google Scholar

Hershberg, R., Altuvia, S., and Margalit, H. (2003). A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res.31, 1813–1820.10.1093/nar/gkg297Search in Google Scholar

Hindley, J. (1967). Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J. Mol. Biol.30, 125–136.10.1016/0022-2836(67)90248-3Search in Google Scholar

Hsu, L.M., Zagorski, J., Wang, Z., and Fournier, M.J. (1985). Escherichia coli 6S RNA gene is part of a dual-function transcription unit. J. Bacteriol.161, 1162–1170.10.1128/jb.161.3.1162-1170.1985Search in Google Scholar PubMed PubMed Central

Huang, C., Wolfgang, M.C., Withey, J., Koomey, M., and Friedman, D.I. (2000). Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J.19, 1098–1107.10.1093/emboj/19.5.1098Search in Google Scholar

Huntzinger, E., Boisset, S., Saveanu, C., Benito, Y., Geissmann, T., Namane, A., Lina, G., Etienne, J., Ehresmann, B., Ehresmann, C., et al. (2005). Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J.24, 824–835.10.1038/sj.emboj.7600572Search in Google Scholar

Hüttenhofer, A., Kiefmann, M., Meier-Ewert, S., O'Brien, J., Lehrach, H., Bachellerie, J.P., and Brosius, J. (2001). RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J.20, 2943–2953.10.1093/emboj/20.11.2943Search in Google Scholar

Ikemura, T. and Dahlberg, J.E. (1973a). Small ribonucleic acids of Escherichia coli. 1. Characterization by polyacrylamide-gel electrophoresis and fingerprint analysis. J. Biol. Chem.248, 5024–5032.10.1016/S0021-9258(19)43666-1Search in Google Scholar

Ikemura, T. and Dahlberg, J.E. (1973b). Small ribonucleic acids of Escherichia coli. 2. Noncoordinate accumulation during stringent control. J. Biol. Chem.248, 5033–5041.10.1016/S0021-9258(19)43667-3Search in Google Scholar

Johansson, J. and Cossart, P. (2003). RNA-mediated control of virulence gene expression in bacterial pathogens. Trends Microbiol.11, 280–285.10.1016/S0966-842X(03)00118-5Search in Google Scholar

Kawano, M., Oshima, T., Kasai, H., and Mori, H. (2002). Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol. Microbiol.45, 333–349.10.1046/j.1365-2958.2002.03042.xSearch in Google Scholar PubMed

Kawano, M., Reynolds, A.A., Miranda-Rios, J., and Storz, G. (2005). Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res.33, 1040–1050.10.1093/nar/gki256Search in Google Scholar PubMed PubMed Central

Keiler, K.C., Waller, P.R., and Sauer, R.T. (1996). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science271, 990–993.10.1126/science.271.5251.990Search in Google Scholar PubMed

Keiler, K.C., Shapiro, L., and Williams, K.P. (2000). tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: a two-piece tmRNA functions in Caulobacter. Proc. Natl. Acad. Sci. USA97, 7778–7783.10.1073/pnas.97.14.7778Search in Google Scholar PubMed PubMed Central

Kim, K.S. and Lee, Y. (2004). Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res.32, 6057–6068.10.1093/nar/gkh939Search in Google Scholar PubMed PubMed Central

Klein, R.J., Misulovin, Z., and Eddy, S.R. (2002). Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc. Natl. Acad. Sci. USA99, 7542–7547.10.1073/pnas.112063799Search in Google Scholar PubMed PubMed Central

Kovacs, S.A., Oneil, J., Watcharapijarn, J., Moekirvan, C., Vijay, S., and Silva, V. (1993). Eubacterial components similar to small nuclear ribonucleoproteins – identification of immunoprecipitable proteins and capped RNAs in a cyanobacterium and a Gram-positive eubacterium. J. Bacteriol.175, 1871–1878.10.1128/jb.175.7.1871-1878.1993Search in Google Scholar PubMed PubMed Central

Kreikemeyer, B., Boyle, M.D., Buttaro, B.A., Heinemann, M., and Podbielski, A. (2001). Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol. Microbiol.39, 392–406.10.1046/j.1365-2958.2001.02226.xSearch in Google Scholar PubMed

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science294, 853–858.10.1126/science.1064921Search in Google Scholar PubMed

Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862.10.1126/science.1065062Search in Google Scholar PubMed

Lease, R.A. and Belfort, M. (2000). A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc. Natl. Acad. Sci. USA97, 9919–9924.10.1073/pnas.170281497Search in Google Scholar PubMed PubMed Central

Lease, R.A., Cusick, M.E., and Belfort, M. (1998). Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl. Acad. Sci. USA95, 12456–12461.10.1073/pnas.95.21.12456Search in Google Scholar PubMed PubMed Central

Lee, R.C. and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science294, 862–864.10.1126/science.1065329Search in Google Scholar PubMed

Lenz, D.H., Mok, K.C., Lilley, B.N., Kulkarni, R.V., Wingreen, N.S., and Bassler, B.L. (2004). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell118, 69–82.10.1016/j.cell.2004.06.009Search in Google Scholar PubMed

Liu, M.Y., Gui, G., Wei, B., Preston, J.F. III, Oakford, L., Yuksel, U., Giedroc, D.P., and Romeo, T. (1997). The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem.272, 17502–17510.10.1074/jbc.272.28.17502Search in Google Scholar

Liu, Y., Cui, Y., Mukherjee, A., and Chatterjee, A.K. (1998). Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol. Microbiol.29, 219–234.Search in Google Scholar

Ma, W.L., Cui, Y., Liu, Y., Dumenyo, C.K., Mukherjee, A., and Chatterjee, A.K. (2001). Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. J. Bacteriol.183, 1870–1880.10.1128/JB.183.6.1870-1880.2001Search in Google Scholar

Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., and Gottesman, S. (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. USA95, 12462–12467.10.1073/pnas.95.21.12462Search in Google Scholar

Majdalani, N., Chen, S., Murrow, J., John, K.S., and Gottesman, S. (2001). Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol.39, 1382–1394.10.1111/j.1365-2958.2001.02329.xSearch in Google Scholar

Mangold, M., Siller, M., Roppenser, B., Vlaminckx, B.J., Penfound, T.A., Klein, R., Novak, R., Novick, R.P., and Charpentier, E. (2004). Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol.53, 1515–1527.10.1111/j.1365-2958.2004.04222.xSearch in Google Scholar

Marker, C., Zemann, A., Terhorst, T., Kiefmann, M., Kastenmayer, J.P., Green, P., Bachellerie, J.P., Brosius, J., and Hüttenhofer, A. (2002). Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr. Biol.12, 2002–2013.10.1016/S0960-9822(02)01304-0Search in Google Scholar

Massé, E. and Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA99, 4620–4625.10.1073/pnas.032066599Search in Google Scholar PubMed PubMed Central

Massé, E., Escorcia, F.E., and Gottesman, S. (2003). Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev.17, 2374–2383.10.1101/gad.1127103Search in Google Scholar PubMed PubMed Central

Mattick, J.S. (2001). Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep.2, 986–991.10.1093/embo-reports/kve230Search in Google Scholar PubMed PubMed Central

Mattick, J.S. and Gagen, M.J. (2001). The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol.18, 1611–1630.10.1093/oxfordjournals.molbev.a003951Search in Google Scholar PubMed

Mironov, A.S., Gusarov, I., Rafikov, R., Lopez, L.E., Shatalin, K., Kreneva, R.A., Perumov, D.A., and Nudler, E. (2002). Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell111, 747–756.10.1016/S0092-8674(02)01134-0Search in Google Scholar

Mizuno, T., Chou, M.Y., and Inouye, M. (1983). Regulation of gene expression by a small RNA transcript (MicRNA) in Escherichia coli K-12. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.59, 335–338.10.2183/pjab.59.335Search in Google Scholar

Mizuno, T., Chou, M.Y., and Inouye, M. (1984). A unique mechanism regulating gene expression – translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. USA81, 1966–1970.10.1073/pnas.81.7.1966Search in Google Scholar PubMed PubMed Central

Møller, T., Franch, T., Udesen, C., Gerdes, K., and Valentin-Hansen, P. (2002). Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev.16, 1696–1706.10.1101/gad.231702Search in Google Scholar PubMed PubMed Central

Muffler, A., Fischer, D., and Hengge-Aronis, R. (1996). The RNA-binding protein HF-I, known as a host factor for phage Qb RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev.10, 1143–1151.10.1101/gad.10.9.1143Search in Google Scholar PubMed

Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J., Kreiswirth, B., and Moghazeh, S. (1993). Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J.12, 3967–3975.10.1002/j.1460-2075.1993.tb06074.xSearch in Google Scholar PubMed PubMed Central

Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002). GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol.45, 1277–1287.10.1046/j.1365-2958.2002.03084.xSearch in Google Scholar PubMed

Opdyke, J.A., Kang, J.G., and Storz, G. (2004). GadY, a small-RNA regulator of acid response genes in Escherichia coli. J. Bacteriol.186, 6698–6705.10.1128/JB.186.20.6698-6705.2004Search in Google Scholar PubMed PubMed Central

Östberg, Y., Bunikis, I., Bergström, S., and Johansson, J. (2004). The etiological agent of Lyme disease, Borrelia burgdorferi, appears to contain only a few small RNA molecules. J. Bacteriol.186, 8472–8477.10.1128/JB.186.24.8472-8477.2004Search in Google Scholar PubMed PubMed Central

Pedersen, K. and Gerdes, K. (1999). Multiple hok genes on the chromosome of Escherichia coli. Mol. Microbiol.32, 1090–1102.10.1046/j.1365-2958.1999.01431.xSearch in Google Scholar PubMed

Pichon, C. and Felden, B. (2003). Intergenic sequence inspector: searching and identifying bacterial RNAs. Bioinformatics19, 1707–1709.10.1093/bioinformatics/btg235Search in Google Scholar

Poritz, M.A., Bernstein, H.D., Strub, K., Zopf, D., Wilhelm, H., and Walter, P. (1990). An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science250, 1111–1117.Search in Google Scholar

Ribes, V., Romisch, K., Giner, A., Dobberstein, B., and Tollervey, D. (1990). E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell63, 591–600.Search in Google Scholar

Rivas, E. and Eddy, S.R. (2000). Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics16, 583–605.10.1093/bioinformatics/16.7.583Search in Google Scholar

Rivas, E., Klein, R.J., Jones, T.A., and Eddy, S.R. (2001). Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr. Biol.11, 1369–1373.Search in Google Scholar

Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., and Gelfand, M.S. (2002). Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J. Biol. Chem.277, 48949–48959.10.1074/jbc.M208965200Search in Google Scholar

Romeo, T. (1998). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol.29, 1321–1330.10.1046/j.1365-2958.1998.01021.xSearch in Google Scholar

Romeo, T., Moore, J., and Smith, J. (1991). A simple method for cloning genes involved in glucan biosynthesis: isolation of structural and regulatory genes for glycogen synthesis in Escherichia coli. Gene108, 23–29.10.1016/0378-1119(91)90483-RSearch in Google Scholar

Saetrom, P., Sneve, R., Kristiansen, K.I., Snøve, O. Jr., Grünfeld, T., Rognes, T., and Seeberg, E. (2005). Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. Nucleic Acids Res.33, 3263–3270.10.1093/nar/gki644Search in Google Scholar PubMed PubMed Central

Schattner, P. (2002). Searching for RNA genes using base-composition statistics. Nucleic Acids Res.30, 2076–2082.10.1093/nar/30.9.2076Search in Google Scholar PubMed PubMed Central

Selinger, D.W., Cheung, K.J., Mei, R., Johansson, E.M., Richmond, C.S., Blattner, F.R., Lockhart, D.J., and Church, G.M. (2000). RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat. Biotechnol.18, 1262–1268.10.1038/82367Search in Google Scholar PubMed

Shimizu, T., Yaguchi, H., Ohtani, K., Banu, S., and Hayashi, H. (2002). Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol.43, 257–265.10.1046/j.1365-2958.2002.02743.xSearch in Google Scholar PubMed

Singer, B.S., Shtatland, T., Brown, D., and Gold, L. (1997). Libraries for genomic SELEX. Nucleic Acids Res.25, 781–786.10.1093/nar/25.4.781Search in Google Scholar PubMed PubMed Central

Sledjeski, D. and Gottesman, S. (1995). A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA92, 2003–2007.10.1073/pnas.92.6.2003Search in Google Scholar

Sledjeski, D.D., Gupta, A., and Gottesman, S. (1996). The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J.15, 3993–4000.10.1002/j.1460-2075.1996.tb00773.xSearch in Google Scholar

Sledjeski, D.D., Whitman, C., and Zhang, A. (2001). Hfq is necessary for regulation by the untranslated RNA DsrA. J. Bacteriol.183, 1997–2005.10.1128/JB.183.6.1997-2005.2001Search in Google Scholar

Sonnleitner, E., Hagens, S., Rosenau, F., Wilhelm, S., Habel, A., Jager, K.E., and Bläsi, U. (2003). Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog.35, 217–228.10.1016/S0882-4010(03)00149-9Search in Google Scholar

Stark, B.C., Kole, R., Bowman, E.J., and Altman, S. (1978). Ribonuclease P: an enzyme with an essential RNA component. Proc. Natl. Acad. Sci. USA75, 3717–3721.10.1073/pnas.75.8.3717Search in Google Scholar PubMed PubMed Central

Storz, G., Opdyke, J.A., and Zhang, A.X. (2004). Controlling mRNA stability and translation with small, noncoding RNAs. Curr. Opin. Microbiol.7, 140–144.10.1016/j.mib.2004.02.015Search in Google Scholar PubMed

Suzuma, S., Asari, S., Bunai, K., Yoshino, K., Ando, Y., Kakeshita, H., Fujita, M., Nakamura, K., and Yamane, K. (2002). Identification and characterization of novel small RNAs in the aspSyrvM intergenic region of the Bacillus subtilis genome. Microbiology148, 2591–2598.10.1099/00221287-148-8-2591Search in Google Scholar PubMed

Tang, T.H., Bachellerie, J.P., Rozhdestvensky, T., Bortolin, M.L., Huber, H., Drungowski, M., Elge, T., Brosius, J., and Hüttenhofer, A. (2002). Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA99, 7536–7541.10.1073/pnas.112047299Search in Google Scholar PubMed PubMed Central

Tang, T.H., Polacek, N., Zywicki, M., Huber, H., Brugger, K., Garrett, R., Bachellerie, J.P., and Hüttenhofer, A. (2005). Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol. Microbiol.55, 469–481.10.1111/j.1365-2958.2004.04428.xSearch in Google Scholar PubMed

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680.10.1093/nar/22.22.4673Search in Google Scholar PubMed PubMed Central

Tjaden, B., Saxena, R.M., Stolyar, S., Haynor, D.R., Kolker, E., and Rosenow, C. (2002). Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res.30, 3732–3738.10.1093/nar/gkf505Search in Google Scholar PubMed PubMed Central

Trotochaud, A.E. and Wassarman, K.M. (2004). 6S RNA function enhances long-term cell survival. J. Bacteriol.186, 4978–4985.10.1128/JB.186.15.4978-4985.2004Search in Google Scholar PubMed PubMed Central

Trotochaud, A.E. and Wassarman, K.M. (2005). A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol.12, 313–319.10.1038/nsmb917Search in Google Scholar PubMed

Udekwu, K.I., Darfeuille, F., Vogel, J., Reimegård, J., Holmqvist, E., and Wagner, E.G.H. (2005). Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev.19, 2355–2366.10.1101/gad.354405Search in Google Scholar PubMed PubMed Central

Ulbrandt, N.D., Newitt, J.A., and Bernstein, H.D. (1997). The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell88, 187–196.Search in Google Scholar

Valentin-Hansen, P., Eriksen, M., and Udesen, C. (2004). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol.51, 1525–1533.10.1111/j.1365-2958.2003.03935.xSearch in Google Scholar PubMed

Valverde, C., Heeb, S., Keel, C., and Haas, D. (2003). RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol. Microbiol.50, 1361–1379.10.1046/j.1365-2958.2003.03774.xSearch in Google Scholar PubMed

Valverde, C., Lindell, M., Wagner, E.G.H., and Haas, D. (2004). A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J. Biol. Chem.279, 25066–25074.10.1074/jbc.M401870200Search in Google Scholar PubMed

Vanderpool, C.K. and Gottesman, S. (2004). Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol. Microbiol.54, 1076–1089.10.1111/j.1365-2958.2004.04348.xSearch in Google Scholar PubMed

Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., and Gelfand, M.S. (2002). Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res.30, 3141–3151.10.1093/nar/gkf433Search in Google Scholar PubMed PubMed Central

Vogel, J. and Wagner, E.G.H. (2005). RNA mining. In: Handbook of RNA Biochemistry, R. Hartmann, R. Bindereif, A. Schön, and E. Westhof, eds. (Weinheim, Germany: Wiley-VCH), pp. 595–613.Search in Google Scholar

Vogel, J., Bartels, V., Tang, T.H., Churakov, G., Slagter-Jäger, J.G., Hüttenhofer, A., and Wagner, E.G.H. (2003). RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res.31, 6435–6443.10.1093/nar/gkg867Search in Google Scholar PubMed PubMed Central

Vogel, J., Argaman, L., Wagner, E.G.H., and Altuvia, S. (2004). The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol.14, 2271–2276.10.1016/j.cub.2004.12.003Search in Google Scholar

Wagner, E.G.H. and Vogel, J. (2003). Noncoding RNAs encoded by bacterial chromosomes. In: Noncoding RNAs, J. Barciszewski and V. Erdmann, eds. (Georgetown, TX, USA: Landes Bioscience), pp. 243–259.Search in Google Scholar

Wagner, E.G.H., Altuvia, S., and Romby, P. (2002). Antisense RNAs in bacteria and their genetic elements. Adv. Genet.46, 361–398.10.1016/S0065-2660(02)46013-0Search in Google Scholar

Washietl, S. and Hofacker, I.L. (2004). Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J. Mol. Biol.342, 19–30.10.1016/j.jmb.2004.07.018Search in Google Scholar

Washietl, S., Hofacker, I.L., and Stadler, P.F. (2005). Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA102, 2454–2459.10.1073/pnas.0409169102Search in Google Scholar

Wassarman, K.M. and Storz, G. (2000). 6S RNA regulates E. coli RNA polymerase activity. Cell101, 613–623.Search in Google Scholar

Wassarman, K.M., Zhang, A., and Storz, G. (1999). Small RNAs in Escherichia coli. Trends Microbiol.7, 37–45.10.1016/S0966-842X(98)01379-1Search in Google Scholar

Wassarman, K.M., Repoila, F., Rosenow, C., Storz, G., and Gottesman, S. (2001). Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev.15, 1637–1651.10.1101/gad.901001Search in Google Scholar

Watanabe, T., Sugiura, R., and Sugita, M. (1997). A novel small stable RNA, 6Sa RNA, from the cyanobacterium Synechococcus sp. strain PCC6301. FEBS Lett.416, 302–306.10.1016/S0014-5793(97)01237-4Search in Google Scholar

Watanabe, T., Sugita, M., and Sugiura, M. (1998). Identification of 10Sa RNA (tmRNA) homologues from the cyanobacterium Synechococcus sp. strain PCC6301 and related organisms. Biochim. Biophys. Acta1396, 97–104.10.1016/S0167-4781(97)00180-2Search in Google Scholar

Weilbacher, T., Suzuki, K., Dubey, A.K., Wang, X., Gudapaty, S., Morozov, I., Baker, C.S., Georgellis, D., Babitzke, P., and Romeo, T. (2003). A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol.48, 657–670.10.1046/j.1365-2958.2003.03459.xSearch in Google Scholar PubMed

Wilderman, P.J., Sowa, N.A., FitzGerald, D.J., FitzGerald, P.C., Gottesman, S., Ochsner, U.A., and Vasil, M.L. (2004). Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. USA101, 9792–9797.10.1073/pnas.0403423101Search in Google Scholar PubMed PubMed Central

Willkomm, D.K., Minnerup, J., Hüttenhofer, A., and Hartmann, R.K. (2005). Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res.33, 1949–1960.10.1093/nar/gki334Search in Google Scholar PubMed PubMed Central

Winkler, W., Nahvi, A., and Breaker, R.R. (2002). Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature419, 952–956.10.1038/nature01145Search in Google Scholar PubMed

Worthington, E.N., Kavakli, I.H., Berrocal-Tito, G., Bondo, B.E., and Sancar, A. (2003). Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae. J. Biol. Chem.278, 39143–39154.10.1074/jbc.M305792200Search in Google Scholar PubMed

Yuan, G.Z., Klambt, C., Bachellerie, J.P., Brosius, J., and Hüttenhofer, A. (2003). RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res.31, 2495–2507.10.1093/nar/gkg361Search in Google Scholar PubMed PubMed Central

Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R., and Storz, G. (1998). The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J.17, 6061–6068.10.1093/emboj/17.20.6061Search in Google Scholar PubMed PubMed Central

Zhang, A., Wassarman, K.M., Rosenow, C., Tjaden, B.C., Storz, G., and Gottesman, S. (2003). Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol.50, 1111–1124.10.1046/j.1365-2958.2003.03734.xSearch in Google Scholar PubMed

Zhang, Y., Zhang, Z., Ling, L., Shi, B., and Chen, R. (2004). Conservation analysis of small RNA genes in Escherichia coli. Bioinformatics20, 599–603.10.1093/bioinformatics/btg457Search in Google Scholar PubMed

Published Online: 2005-12-09
Published in Print: 2005-12-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.140/html
Scroll to top button