Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 9, 2013

Macrophage activation by apoptotic cells

  • Bernhard Brüne EMAIL logo and Andreas von Knethen

Abstract

Macrophages sense exogenous/endogenous danger signals due to their high functional plasticity and adjust their output signals accordingly. These comprise immune responses with the formation of reactive oxygen species, nitric oxide and pro-inflammatory cytokines, with the assumption that reactive species compose a redox signalling network. However, alternatively polarised macrophages suppress toxic radical formation, producing anti-inflammatory signatures associated with tissue repair, immune modulation, and angiogenesis. To change their mediator profile, we describe macrophage subsets and their response to apoptotic cells, focusing on reactive oxygen/nitrogen species and signalling mechanisms, and how apoptotic cells polarise macrophages to adopt an immune-regulatory, pro-angiogenic, and tumour-promoting phenotype.


Corresponding author: Bernhard Brüne, Institute of Biochemistry I – Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany, e-mail:

We apologise to researchers whose primary observations, which form the basis of current knowledge in the field, could not be cited due to space limitations, or have been acknowledged indirectly, by referring to current reviews. Our work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 815, SFB 1039, BR999), Deutsche Krebshilfe (109599), Translational Research Innovation Pharma (TRIP), the Hans Kröner-Graduate School, and the Sander Foundation (2013.036.1).

References

Ariel, A.; Serhan, C. N. New Lives Given by Cell death: macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation. Front. Immunol.2012, 3, 4.Search in Google Scholar

Asada, K.; Sasaki, S.; Suda, T.; Chida, K.; Nakamura, H. Antiinflammatory roles of peroxisome proliferator-activated receptor gamma in human alveolar macrophages. Am. J. Respir. Crit. Care Med.2004, 169, 195–200.Search in Google Scholar

Auffray, C.; Sieweke, M. H.; Geissmann, F. Blood onocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 2009, 27, 669–692.Search in Google Scholar

Barra, V.; Kuhn, A. M.; von Knethen, A.; Weigert, A.; Brune, B. Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB. Cell. Mol. Life Sci. 2011, 68, 1815–1827.Search in Google Scholar

Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol.2007, 81, 1–5.Search in Google Scholar

Brecht, K.; Weigert, A.; Hu, J.; Popp, R.; Fisslthaler, B.; Korff, T.; Fleming, I.; Geisslinger, G.; Brune, B. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J.2011, 25, 2408–2417.Search in Google Scholar

Brune, B.; Zhou, J. Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc. Res. 2007, 75, 275–282.Search in Google Scholar

Brune, B.; Dehne, N.; Grossmann, N.; Jung, M.; Namgaladze, D.; Schmid, T.; von Knethen, A.; Weigert, A. Redox control of inflammation in macrophages. antioxid. Redox Signal. 2013, 18, 595–637.Search in Google Scholar

Burgermeister, E.; Chuderland, D.; Hanoch, T.; Meyer, M.; Liscovitch, M.; Seger, R. Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor g. Mol. Cell. Biol.2007, 27, 803–817.Search in Google Scholar

Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA1998, 95, 11715–11720.Search in Google Scholar

Choi, S. H.; Aid, S.; Kim, H. W.; Jackson, S. H.; Bosetti, F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J. Neurochem. 2012, 120, 292–301.Search in Google Scholar

Chowdhury, R.; Flashman, E.; Mecinovic, J.; Kramer, H. B.; Kessler, B. M.; Frapart, Y. M.; Boucher, J. L.; Clifton, I. J.; McDonough, M. A.; Schofield, C. J. Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). J. Mol. Biol.2011, 410, 268–279.Search in Google Scholar

Corzo, C. A.; Condamine, T.; Lu, L.; Cotter, M. J.; Youn, J. I.; Cheng, P.; Cho, H. I.; Celis, E.; Quiceno, D. G.; Padhya, T.; et al. HIF-1a regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 2010, 207, 2439–2453.Search in Google Scholar

Dehne, N.; Brune, B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story. Antioxid. Redox Signal. 2012, published ahead of print; DOI: 10.1089/ars.20124776.Search in Google Scholar

Doedens, A. L.; Stockmann, C.; Rubinstein, M. P.; Liao, D.; Zhang, N.; DeNardo, D. G.; Coussens, L. M.; Karin, M.; Goldrath, A. W.; Johnson, R. S. Macrophage expression of hypoxia-inducible factor-1 a suppresses T-cell function and promotes tumor progression. Cancer Res. 2010, 70, 7465–7475.Search in Google Scholar

Feng, B.; Yao, P. M.; Li, Y.; Devlin, C. M.; Zhang, D.; Harding, H. P.; Sweeney, M.; Rong, J. X.; Kuriakose, G.; Fisher, E. A.; et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 2003, 5, 781–792.Search in Google Scholar

Fernandez-Boyanapalli, R. F.; Frasch, S. C.; McPhillips, K.; Vandivier, R.W.; Harry, B. L.; Riches, D. W.; Henson, P. M.; Bratton, D. L. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood2009, 113, 2047–2055.Search in Google Scholar

Fernandez-Boyanapalli, R.; Frasch, S. C.; Riches, D. W.; Vandivier, R. W.; Henson, P. M.; Bratton, D. L. PPARg activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease. Blood2010, 116, 4512–4522.Search in Google Scholar

Fontayne, A.; Dang, P. M.; Gougerot-Pocidalo, M. A.; El-Benna, J. Phosphorylation of p47phox sites by PKC a, b II, d, and z: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry2002, 41, 7743–7750.Search in Google Scholar

Forman, H. J.; Torres, M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 2002, 166, S4–S8.Search in Google Scholar

Frieler, R. A.; Ramnarayanan, S.; Mortensen, R. M. Nuclear receptor control of opposing macrophage phenotypes in cardiovascular disease. Front. Biosci.2012, 17, 1917–1930.Search in Google Scholar

Galli, S. J.; Borregaard, N.; Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol.2011, 12, 1035–1044.Search in Google Scholar

Gautier, E. L.; Shay, T.; Miller, J.; Greter, M.; Jakubzick, C.; Ivanov, S.; Helft, J.; Chow, A.; Elpek, K. G.; Gordonov, S.; et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13, 1118–1128.Search in Google Scholar

Geissmann, F.; Manz, M. G.; Jung, S.; Sieweke, M. H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science2010, 327, 656–661.Search in Google Scholar

Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3, 23–35.Search in Google Scholar

Gotoh, T.; Mori, M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J. Cell Biol. 1999, 144, 427–434.Search in Google Scholar

Greer, S. N.; Metcalf, J. L.; Wang, Y.; Ohh, M. The updated biology of hypoxia-inducible factor. EMBO J. 2012, 31, 2448–2460.Search in Google Scholar

Gregory, C. D.; Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 2011, 223, 177–194.Search in Google Scholar

Gude, D. R.; Alvarez, S. E.; Paugh, S. W.; Mitra, P.; Yu, J.; Griffiths, R.; Barbour, S. E.; Milstien, S.; Spiegel, S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 2008, 22, 2629–2638.Search in Google Scholar

Han, C. Z.; Ravichandran, K. S. Metabolic connections during apoptotic cell engulfment. Cell2011, 147, 1442–1445.Search in Google Scholar

Herr, B.; Zhou, J.; Werno, C.; Menrad, H.; Namgaladze, D.; Weigert, A.; Dehne, N.; Brune, B. The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor-1a in macrophages via sphingosine-1-phosphate and transforming growth factor-b. Blood2009, 114, 2140–2148.Search in Google Scholar

Hughes, J. E.; Srinivasan, S.; Lynch, K. R.; Proia, R. L.; Ferdek, P.; Hedrick, C. C. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 2008, 102, 950–958.Search in Google Scholar

Hwang, J.; Kleinhenz, D. J.; Lassegue, B.; Griendling, K. K.; Dikalov, S.; Hart, C. M. Peroxisome proliferator-activated receptor-g ligands regulate endothelial membrane superoxide production. Am. J. Physiol. Cell Physiol. 2005, 288, C899–905.Search in Google Scholar

Janssen, W. J.; Henson, P. M. Cellular regulation of the inflammatory response. Toxicol. Pathol. 2012, 40, 166–173.Search in Google Scholar

Johann, A. M.; Barra, V.; Kuhn, A. M.; Weigert, A.; von Knethen, A.; Brune, B. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. FASEB J.2007, 21, 2704–2712.Search in Google Scholar

Kaelin, W. G. Jr.; Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell2008, 30, 393–402.Search in Google Scholar

Kagan, V. E.; Gleiss, B.; Tyurina, Y. Y.; Tyurin, V. A.; Elenstrom-Magnusson, C.; Liu, S. X.; Serinkan, F. B.; Arroyo, A.; Chandra, J.; Orrenius, S.; et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol. 2002, 169, 487–499.Search in Google Scholar

Kaufmann, S. H. Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat. Immunol. 2008, 9, 705–712.Search in Google Scholar

Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer2012, 12, 860–875.Search in Google Scholar

Lawrence, T.; Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 2011, 11, 750–761.Search in Google Scholar

Leto, T. L.; Morand, S.; Hurt, D.; Ueyama, T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 2009, 11, 2607–2619.Search in Google Scholar

Loker, E. S.; Adema, C. M., Zhang, S. M.; Kepler, T. B. Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunol. Rev.2004, 198, 10–24.Search in Google Scholar

Maceyka, M.; Harikumar, K. B.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol.2012, 22, 50–60.Search in Google Scholar

Majai, G.; Sarang, Z.; Csomos, K.; Zahuczky, G.; Fesus, L. PPARg-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur. J. Immunol.2007, 37, 1343–1354.Search in Google Scholar

Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol.2002, 23, 549–555.Search in Google Scholar

Mantovani, A.; Sica, A.; Locati, M. New vistas on macrophage differentiation and activation. Eur. J. Immunol. 2007, 37, 14–16.Search in Google Scholar

Mosser, D. M.; Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969.Search in Google Scholar

Munder, M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol.2009, 158, 638–651.Search in Google Scholar

Munoz, L. E.; Janko, C.; Schulze, C.; Schorn, C.; Sarter, K.; Schett, G.; Herrmann, M. Autoimmunity and chronic inflammation-two clearance-related steps in the etiopathogenesis of SLE. Autoimmun. Rev. 2010, 10, 38–42.Search in Google Scholar

Niecknig, H.; Tug, S.; Reyes, B. D.; Kirsch, M.; Fandrey, J.; Berchner-Pfannschmidt, U. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic. Res. 2012, 46, 705–717.Search in Google Scholar

Odegaard, J. I.; Ricardo-Gonzalez, R. R.; Goforth, M. H.; Morel, C. R.; Subramanian, V.; Mukundan, L.; Red Eagle, A.; Vats, D.; Brombacher, F.; Ferrante, A. W.; et al. Macrophage-specific PPARg controls alternative activation and improves insulin resistance. Nature2007, 447, 1116–1120.Search in Google Scholar

Ogden, C. A.; Pound, J. D.; Batth, B. K.; Owens, S.; Johannessen, I.; Wood, K.; Gregory, C. D. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J. Immunol.2005, 174, 3015–3023.Search in Google Scholar

Olson, N.; van der Vliet, A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide2011, 25, 125–137.10.1016/j.niox.2010.12.010Search in Google Scholar PubMed PubMed Central

Peyssonnaux, C.; Datta, V.; Cramer, T.; Doedens, A.; Theodorakis, E. A.; Gallo, R. L.; Hurtado-Ziola, N.; Nizet, V.; Johnson, R. S. HIF-1a expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest.2005, 115, 1806–1815.Search in Google Scholar

Pyne N. J.; Pyne S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer2010, 10, 489–503.10.1038/nrc2875Search in Google Scholar PubMed

Sarkar, S.; Maceyka, M.; Hait, N. C.; Paugh, S. W.; Sankala, H.; Milstien, S.; Spiegel, S. Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett.2005, 579, 5313–5317.Search in Google Scholar

Savill, J.; Fadok, V.; Henson, P.; Haslett, C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today1993, 14, 131–136.Search in Google Scholar

Shao, W. H.; Cohen, P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 2011, 13, 202.Search in Google Scholar

Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest.2012, 122, 787–795.Search in Google Scholar

Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol.2003, 4, 397–407.Search in Google Scholar

Stuehr, D. J.; Santolini, J.; Wang, Z. Q.; Wei, C. C.; Adak, S. Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem.2004, 279, 36167–36170.Search in Google Scholar

Tauber, A. I. Metchnikoff and the phagocytosis theory. Nat. Rev. Mol. Cell Biol. 2003, 4, 897–901.Search in Google Scholar

Thorp, E.; Vaisar T.; Subramanian, M.; Mautner L.; Blobel, C.; Tabas, I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cd, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 2011,286, 33335–33344.Search in Google Scholar

Tyurina, Y. Y.; Kawai, K.; Tyurin, V. A.; Liu, S. X.; Kagan, V. E.; Fabisiak, J. P. The plasma membrane is the site of selective phosphatidylserine oxidation during apoptosis: role of cytochrome c. Antioxid. Redox Signal.2004a, 6, 209–225.Search in Google Scholar

Tyurina, Y. Y.; Serinkan, F. B.; Tyurin, V. A.; Kini, V.; Yalowich, J. C.; Schroit, A. J.; Fadeel, B.; Kagan, V. E. Lipid antioxidant, etoposide, inhibits phosphatidylserine externalization and macrophage clearance of apoptotic cells by preventing phosphatidylserine oxidation. J. Biol. Chem.2004b, 279, 6056–6064.Search in Google Scholar

Vandivier, R. W.; Henson, P. M.; Douglas, I. S. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest2006, 129, 1673–1682.Search in Google Scholar

Venkataraman, K.; Thangada, S.; Michaud, J.; Oo, M. L.; Ai, Y.; Lee, Y. M.; Wu, M.; Parikh, N. S.; Khan, F.; Proia, R. L.; et al. Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem. J.2006, 397, 461–471.Search in Google Scholar

Vignais, P. V. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell. Mol. Life Sci.2002, 59, 1428–1459.Search in Google Scholar

von Knethen, A.; Brune, B. Activation of peroxisome proliferator-activated receptor g by nitric oxide in monocytes/macrophages down-regulates p47phox and attenuates the respiratory burst. J. Immunol. 2002, 169, 2619–2626.Search in Google Scholar

von Knethen, A.; Soller, M.; Tzieply, N.; Weigert, A.; Johann, A. M.; Jennewein, C.; Kohl, R.; Brune, B. PPARgamma1 attenuates cytosol to membrane translocation of PKCa to desensitize monocytes/macrophages. J. Cell Biol.2007, 176, 681–694.Search in Google Scholar

Weigert, A.; Johann, A. M.; von Knethen, A.; Schmidt, H.; Geisslinger, G.; Brune, B. Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood2006, 108, 1635–1642.Search in Google Scholar

Weigert, A.; Tzieply, N.; von Knethen, A.; Johann, A. M.; Schmidt, H.; Geisslinger, G.; Brune, B. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol. Biol. Cell2007, 18, 3810–3819.Search in Google Scholar

Weigert, A.; Weis, N.; Brune, B. Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology2009, 214, 748–760.Search in Google Scholar

Weigert, A.; Cremer, S.; Schmidt, M. V.; von Knethen, A.; Angioni, C.; Geisslinger, G.; Brune, B. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood2010, 115, 3531–3540.Search in Google Scholar

Weis, N.; Weigert, A.; von Knethen, A.; Brune, B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol. Biol. Cell2009, 20, 1280–1288.Search in Google Scholar

Wink, D. A.; Hines, H. B.; Cheng, R. Y.; Switzer, C. H.; Flores-Santana, W.; Vitek, M. P.; Ridnour, L. A.; Colton, C. A. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol.2011, 89, 873–891.Search in Google Scholar

Wynn, T. A.; Chawla, A.; Pollard, J. W. Macrophage, biology in development, homeostasis and disease. Nature2013, 496, 445–455.Search in Google Scholar

Xu, W.; Roos, A.; Schlagwein, N.; Woltman, A. M.; Daha, M. R.; van Kooten, C. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood2006, 107, 4930–4937.Search in Google Scholar

Yi, L.; Liu, Q.; Orandle, M. S.; Sadiq-Ali, S.; Koontz, S. M.; Choi, U.; Torres-Velez, F. J.; Jackson, S. H. p47(phox) directs murine macrophage cell fate decisions. Am. J. Pathol.2012, 180, 1049–1058.Search in Google Scholar

Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D. N.; Leenen, P. J.; Liu, Y. J.; MacPherson, G.; Randolph, G. J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood2010, 116, e74–e80.10.1182/blood-2010-02-258558Search in Google Scholar PubMed

Zitvogel, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell2010, 140, 798–804.Search in Google Scholar

Zizzo, G.; Hilliard, B. A.; Monestier, M.; Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol.2012, 189, 3508–3520.Search in Google Scholar

Received: 2013-6-11
Accepted: 2013-8-15
Published Online: 2013-09-09
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/irm-2013-0002/html
Scroll to top button