Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 8, 2017

Portable XRF: A Tool for the Study of Corundum Gems

  • Germana Barone EMAIL logo , Paolo Mazzoleni , Danilo Bersani and Simona Raneri
From the journal Open Archaeology

Abstract

Origin of gemstones is a key aspect not only in gemological field but also in Cultural Heritage studies, for the correct evaluation of precious artifacts. The studies on gems require the application of non-invasive and non-destructive methods; among them, portable spectroscopic techniques has been demonstrated as powerful tools, providing a fingerprint of gems for origin and provenance determination. In this study, portable XRF spectroscopy has been applied to test the potential of the technique for the origin determination of corundum gems. The obtained results allowed distinguishing natural and synthetic rubies and sapphires.

References

Abduriyim, A., & Kitawaki, H. (2006). Applications of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to gemology. Gems & Gemology, 42, 98-118.10.5741/GEMS.42.2.98Search in Google Scholar

Adriaens, A. (2005). Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1503-1516.Search in Google Scholar

Barone, G., Bersani, D., Crupi, V., et al. (2014). A portable versus micro-Raman equipment comparison for gemmological purposes: the case of sapphires and their imitations. J. Raman Spectrosc., 45, 1309-1317. doi: 10.1002/jrs.4555.Search in Google Scholar

Barone, G., Bersani, D., Jehlička, J., et al. (2015a). Fast on-site identification of minerals by using portable Raman equipment in gemological trade contexts and in collectors exhibitions. Periodico di Mineralogia, 208, 27-28.Search in Google Scholar

Barone, G., Bersani, D., Jehlička, et al. (2015b). Nondestructive investigation on the 17-18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J. Raman Spectrosc., 46, 989-995. doi: 10.1002/jrs.4649.Search in Google Scholar

Barone, G., Mazzoleni, P., Raneri, S., et al. (2016a). Raman investigation on precious jewelry collections preserved in Paolo Orsi Regional Museum (Siracusa, Sicily) by using portable equipment. Applied Spectroscopy, 70, 1420-1431.10.1177/0003702816662592Search in Google Scholar

Barone, G., Bersani, D., Lottici, P.P., et al. (2016b). Red gemstone characterization by micro-Raman spectroscopy: the case of rubies and their imitations. J. Raman Spectrosc., 47, 1534-1539. doi: 10.1002/jrs.4919.Search in Google Scholar

Bersani, D., Azzi, G., Lambruschi, E., et al., (2014). Characterization of emeralds by micro-Raman spectroscopy. J. Raman Spectrosc., 45, 1293-1300. doi: 10.1002/jrs.4524Search in Google Scholar

Bersani, D., & Lottici, P.P. (2010) Applications of Raman spectroscopy to gemology, Analytical and bioanalytical chemistry, 397, 2631-2646.10.1007/s00216-010-3700-1Search in Google Scholar

Gliozzo, E., Grassi, N., Bonanni, P., et al. (2011). Gemstones from Vigna Barberini at the palatine hill (Rome, Italy). Archaeometry, 53, 469-489.10.1111/j.1475-4754.2010.00558.xSearch in Google Scholar

Guillong, M., & Günther, D. (2001). Quasi ‘non-destructive’ laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires. Spectrochimica Acta B - Atomic Spectroscopy, 56, 1219-1231.10.1016/S0584-8547(01)00185-9Search in Google Scholar

Hughes, R.W. (1997). Ruby & Sapphire, RWH Publishing, Boulder, CO. Jehlička, J., Culka, A., Baštová, M., et al. (2016). The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones. Philosophical Transactions of the Royal Society of London A.: Mathematical, Physical and Engineering Sciences, 374, 1-19.Search in Google Scholar

Jeršek, M. & Kramar, S. (2014). Raman microspectroscopy of gemstones from a chalice made in 1732. J. Raman Spectrosc., 45, 1000-1005. doi: 10.1002/jrs.4560.Search in Google Scholar

Joseph, D., Lal, M., Shinde P. S., et al. (2000). Characterization of gem stones (rubies and sapphires) by energy-dispersive x-ray fluorescence spectrometry. X-Ray Spectrom, 29, 147-150.10.1002/(SICI)1097-4539(200003/04)29:2<147::AID-XRS370>3.0.CO;2-KSearch in Google Scholar

Karampelas, S., Wörle, M., Hunger, K., et al. (2012). Micro-Raman spectroscopy on two chalices from the Benedictine Abbey of Einsiedeln: Identification of gemstones. J. Raman Spectrosc., 43, 1833-1838. doi:10.1002/jrs.4069.Search in Google Scholar

Kiefert, L., Chalain, J.P., & Häberli, S. (2005). Case study: Diamonds, gemstones and pearls: From the past to the present. In: Edwards and Chalmers (Eds.), Royal Society of Chemistry (Great Britain), pp. 379-402.Search in Google Scholar

Lauwers, D., Candeias, A., Coccato, A., et al. (2016). Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 157, 146-152.10.1016/j.saa.2015.12.013Search in Google Scholar

Lo Giudice, A., Re, A., Calusi, S., Giuntini, L., et al. (2009). Multitechnique characterization of lapis lazuli for provenance study. Analytical and Bioanalytical Chemistry, 395, 2211-2217.10.1007/s00216-009-3039-7Search in Google Scholar

Lu, P.J., Yao, N., So, J.F., et al. (2005). The earliest use of corundum and diamond, in prehistoric China. Archaeometry, 47, 1-12.10.1111/j.1475-4754.2005.00184.xSearch in Google Scholar

Muhlmeister, S., & Devouard, B. (1991). Trace element chemistry of natural and synthetic rubies. In A.S. Keller (Ed.), Proceedings of the International Gemological Symposium 1991, 139-140. Santa Monica, CA: Gemological Institute of America.Search in Google Scholar

Muhlmeister, S., Fritsch, E., Shigley, J.E., et al. (1998). Separating natural and synthetic rubies on the basis of trace-element chemistry, Gems & Gemology, 34, 80-101.10.5741/GEMS.34.2.80Search in Google Scholar

O’Donoghue, M. (2006). Gems: their sources, descriptions and identification, Elsevier, Great Britain.Search in Google Scholar

Osterrothová, K., Minaříková, L., Culka, et al. (2014). In situ study of stones adorning a silver Torah shield using portable Raman spectrometers, J. Raman Spectrosc., 45, 830-837. doi:10.1002/jrs.4541Search in Google Scholar

Petrová, Z., Jehlička, J., Čapoun, T., et al. (2012). Gemstones and noble metals adorning the sceptre of the Faculty of Science of Charles University in Prague: integrated analysis by Raman and XRF handheld instruments. J. Raman Spectrosc., 43, 1275-1280. doi:10.1002/jrs.4043.Search in Google Scholar

Rankin, A.H., Greenwood, J., & Hargreaves, D. (2003). Chemical fingerprinting of some East African gem rubies by Laser Ablation ICP-MS. The Journal of Gemmology, 28, 473-482.10.15506/JoG.2003.28.8.473Search in Google Scholar

Reiche, I., & Lambacher, L. (2004). In situ Raman spectroscopic investigations of the adorning gemstones on the reliquary Heinrich’s Cross from the treasury of Basel Cathedral. J. Raman Spectrosc., 35, 719-725. doi:10.1002/jrs.1197.Search in Google Scholar

Rossman, G.R. (2009). The Geochemistry of Gems and Its Relevance to Gemology: Different Traces, Different Prices. Elements, 5, 159-162.10.2113/gselements.5.3.159Search in Google Scholar

Vandenabeele, P., Edwards, H.G.M., & Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev., 43, 2628-2649.10.1039/c3cs60263jSearch in Google Scholar

Received: 2016-12-2
Accepted: 2017-7-9
Published Online: 2017-9-8
Published in Print: 2017-9-26

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/opar-2017-0011/html
Scroll to top button