Skip to main content
Log in

The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The steel–concrete interface (SCI) is known to influence corrosion of steel in concrete. However, due to the numerous factors affecting the SCI—including steel properties, concrete properties, execution, and exposure conditions—it remains unclear which factors have the most dominant impact on the susceptibility of reinforced concrete to corrosion. In this literature review, prepared by members of RILEM technical committee 262-SCI, an attempt is made to elucidate the effect of numerous SCI characteristics on chloride-induced corrosion initiation of steel in concrete. We use a method to quantify and normalize the effect of individual SCI characteristics based on different literature results, which allows comparing them in a comprehensive context. It is found that the different SCI characteristics have received highly unbalanced research attention. Parameters such as w/b ratio and cement type have been studied most extensively. Interestingly, however, literature consistently indicates that those parameters have merely a moderate effect on the corrosion susceptibility of steel in concrete. Considerably more pronounced effects were identified for (1) steel properties, including metallurgy, presence of mill scale or rust layers, and surface roughness, and (2) the moisture state. Unfortunately, however, these aspects have received comparatively little research attention. Due to their apparently strong influence, future corrosion studies as well as developments towards predicting corrosion initiation in concrete would benefit from considering those aspects. Particularly the working mechanisms related to the moisture conditions in microscopic and macroscopic voids at the SCI is complex and presents major opportunities for further research in corrosion of steel in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bäumel A (1959) Die Auswirkung von Betonzusatzmitteln auf das Korrosionsverhalten von Stahl in Beton. Zement-Kalk-Gips 7:294–305

    Google Scholar 

  2. Page CL (1975) Mechanism of corrosion protection in reinforced concrete marine structures. Nature 258:514–515

    Google Scholar 

  3. Yonezawa T, Ashworth V, Procter RPM (1988) Pore solution composition and chloride effects on the corrosion of steel in concrete. Corrosion 44(7):489–499

    Google Scholar 

  4. Sandberg P (1998) The effect of defects at the steel-concrete interface, exposure regime and cement type on pitting corrosion in concrete. Report TVBM-3081. Lund University, Sweden

  5. Soylev TA, François R (2003) Quality of steel-concrete interface and corrosion of reinforcing steel. Cem Concr Res 33(9):1407–1415

    Google Scholar 

  6. Nygaard PV (2003) Effect of steel-concrete interface defects on the chloride threshold for reinforcement corrosion. M.Sc. thesis, Danish Technical University (DTU)

  7. Page CL (2009) Initiation of chloride-induced corrosion of steel in concrete: role of the interfacial zone. Mater Corros 60(8):586–592

    Google Scholar 

  8. Angst U, Rønnquist A, Elsener B, Larsen CK, Vennesland Ø (2011) Probabilistic considerations on the effect of specimen size on the critical chloride content in reinforced concrete. Corros Sci 53:177–187

    Google Scholar 

  9. Zhang RJ, Castel A, François R (2011) Influence of steel-concrete interface defects owing to the top-bar effect on the chloride-induced corrosion of reinforcement. Mag Concr Res 63(10):773–781

    Google Scholar 

  10. Angst UM, Elsener B (2017) The size effect in corrosion greatly influences the predicted life span of concrete infrastructures. Sci Adv 3(8):e1700751

    Google Scholar 

  11. Shi JJ, Ming J (2017) Influence of defects at the steel-mortar interface on the corrosion behavior of steel. Constr Build Mater 136:118–125

    Google Scholar 

  12. Angst UM, Geiker MR, Michel A, Gehlen C, Wong H, Isgor OB, Elsener B, Hansson CM, Francois R, Hornbostel K, Polder R, Alonso MC, Sanchez M, Correia MJ, Criado M, Sagues A, Buenfeld N (2017) The steel-concrete interface. Mater Struct 50(2):143

    Google Scholar 

  13. Angst U, Elsener B, Larsen CK, Vennesland Ø (2009) Critical chloride content in reinforced concrete—a review. Cem Concr Res 39:1122–1138

    Google Scholar 

  14. Cao Y, Gehlen C, Angst U, Wang L, Wang ZD, Yao Y (2019) Critical chloride content in reinforced concrete—an updated review considering Chinese experience. Cem Concr Res 117:58–68

    Google Scholar 

  15. Stuart A, Ord JK (1998) Kendall’s advanced theory of statistics. Wiley, New York

    MATH  Google Scholar 

  16. Tang L, Frederiksen JM, Angst UM, Polder R, Alonso MC, Elsener B, Hooton RD, Pacheco J (2018) Experiences from RILEM TC 235-CTC in recommending a test method for chloride threshold values in concrete. RILEM Techn Lett 3:25–31

    Google Scholar 

  17. Rehm G, Russwurm D (1977) Assessment of concrete reinforcing bars by the Tempcore process. Betonwek + Fertigteil-Technik 6:300–307

    Google Scholar 

  18. Ray A, Mukerjee D, Sen SK, Bhattacharya A, Dhua SK, Prasad MS, Banerjee N, Popli AM, Sahu AK (1997) Microstructure and properties of thermomechanically strengthened reinforcement bars: a comparative assessment of plain-carbon and low-alloy steel grades. J Mater Eng Perform 6(3):335–343

    Google Scholar 

  19. Lopez DA, Perez T, Simison SN (2003) The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal. Mater Des 24(8):561–575

    Google Scholar 

  20. Sarkar PP, Kumar P, Manna MK, Chakraborti PC (2005) Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution. Mater Lett 59(19–20):2488–2491

    Google Scholar 

  21. Wranglen G (1974) Pitting and sulphide inclusions in steel. Corros Sci 14(5):331–349

    Google Scholar 

  22. Trejo D, Pillai RG (2003) Accelerated chloride threshold testing: part I—ASTM A 615 and A 706 reinforcement. ACI Mater J 100(6):519–527

    Google Scholar 

  23. Trejo D, Pillai RG (2004) Accelerated chloride threshold testing—part II: corrosion-resistant reinforcement. ACI Mater J 101(1):57–64

    Google Scholar 

  24. Angst U, Elsener B (2015) Forecasting chloride-induced reinforcement corrosion in concrete—effect of realistic reinforcement steel surface conditions. In: Proceedings of international conference on concrete repair, rehabilitation and retrofitting (ICCRRR), Leipzig, Germany

  25. Kumar SAO (2017) Microstructural and corrosion characteristics of quenched and self-tempered (QST) steel reinforcing bars. M.S. Thesis

  26. Trejo D, Monteiro PJM, Gerwick BC, Thomas G (2000) Microstructural design of concrete reinforcing bars for improved corrosion performance. ACI Mater J 97(1):78–83

    Google Scholar 

  27. Kelestemur O, Aksoy M, Yildiz S (2009) Corrosion behavior of tempered dual-phase steel embedded in concrete. Int J Min Met Mater 16(1):43–50

    Google Scholar 

  28. Kelestemur O, Yildiz S (2009) Effect of various dual-phase heat treatments on the corrosion behavior of reinforcing steel used in the reinforced concrete structures. Constr Build Mater 23(1):78–84

    Google Scholar 

  29. Alonso C, Andrade C, Castellote M, Castro P (2000) Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cem Concr Res 30:1047–1055

    Google Scholar 

  30. Zafar I, Sugiyama T (2014) Laboratory investigation to study the corrosion initiation of rebars in fly ash concrete. Mag Concr Res 66(20):1051–1064

    Google Scholar 

  31. Michel L, Angst UM (2018) Towards understanding corrosion initiation in concrete—influence of local electrochemical properties of reinforcing steel. In: Proceedings of 5th international conference on concrete repair, rehabilitation and retrofitting—ICCRRR, 2018, Cape Town, South Africa

  32. Boschmann Käthler, C, Angst UM, Elsener B (2018) Towards understanding corrosion initiation in concrete—influence of local concrete properties in the steel-concrete interfacial zone. In: Proceedings of 5th international conference on concrete repair, rehabilitation and retrofitting—ICCRRR, 2018, Cape Town, South Africa

  33. Mammoliti LT, Brown LC, Hansson CM, Hope BB (1996) The influence of surface finish of reinforcing steel and pH of the test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions. Cem Concr Res 26(4):545–550

    Google Scholar 

  34. Li L, Sagüés AA (2001) Chloride corrosion threshold of reinforcing steel in alkaline solutions—open-circuit immersion tests. Corrosion 57:19–28

    Google Scholar 

  35. Ghods P, Isgor OB, Mcrae GA, Cu GP (2010) Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions. Corros Sci 52(5):1649–1659

    Google Scholar 

  36. Boubitsas D, Tang L (2015) The influence of reinforcement steel surface condition on initiation of chloride induced corrosion. Mater Struct 48(8):2641–2658

    Google Scholar 

  37. Mohammed TU, Hamada H (2006) Corrosion of steel bars in concrete with various steel surface conditions. ACI Mater J 103(4):233–242

    Google Scholar 

  38. Chen S-M, Cao B, Ma K (2014) Effects of pH-value and chloride ion concentration on passivation behavior of steel rebar in different surface conditions. Corros Protect 35(8):808–812

    Google Scholar 

  39. Mahallati E, Saremi M (2006) An assessment on the mill scale effects on the electrochemical characteristics of steel bars in concrete under DC-polarization. Cem Concr Res 36(7):1324–1329

    Google Scholar 

  40. Pillai RG, Trejo D (2005) Surface condition effects on critical chloride threshold of steel reinforcement. ACI Mater J 102(2):103–109

    Google Scholar 

  41. Ghods P, Isgor OB, McRae GA, Li J, Gu GP (2011) Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar. Corros Sci 53:946–954

    Google Scholar 

  42. Yang F (2017) Corrosion protection of steel embedded in new sustainable cementitious materials. Ph.D. thesis, Politechnico Milano. Milano, Italy

  43. Altayyib AJ, Khan MS, Allam IM, Almana AI (1990) Corrosion behavior of pre-rusted rebars after placement in concrete. Cement Concr Res 20(6):955–960

    Google Scholar 

  44. Mohammed TU, Hamada H (2006) Corrosion of horizontal bars in concrete and method to delay early corrosion. ACI Mater J 103(5):303–311

    Google Scholar 

  45. Jäggi S, Elsener B, Böhni H (2000) Oxygen reduction on mild steel and stainless steel in alkaline solutions. In: Proceedings corrosion of reinforcement in concrete—corrosion mechanism and protection. EFC Publication No. 31, London, pp 3–12

  46. Li L, Sagüés AA (2001) Metallurgical effects on chloride ion corrosion threshold of steel in concrete (final report)

  47. Gunay HB, Isgor OB, Ghods P (2015) Kinetics of passivation and chloride-induced depassivation of iron in simulated concrete pore solutions using electrochemical quartz crystal nanobalance. Corrosion 71(5):615–627

    Google Scholar 

  48. Bouzeghaia N, Mihi A, Ait-Mokthar A, Naoun M (2017) Effect of passivation on chloride concentration threshold of steel reinforcement corrosion. Anti-Corros Methods Mater 64:588–598

    Google Scholar 

  49. Qasem M, Yi Y, Hanaei SA, Cho P (2016) Electrochemical behavior of reinforcing steel for nuclear reactor containment buildings. IOSR J Mech Civ Eng 13:80–90

    Google Scholar 

  50. Hurley MF, Scully JR (2006) Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel. Corrosion 62(10):892–904

    Google Scholar 

  51. Baroux B (1995) The pitting corrosion of stainless steels—further insights. In: Marcus P, Oudar J (eds) Corrosion mechanisms in theory and practice. Marcel Dekker Inc., New York, pp 265–309

    Google Scholar 

  52. Elsener B, Rossi A (2017) Passivation of steel and stainless steels in alkaline solutions simulating concrete. In: Wandelt K (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier

  53. Bertolini L, Elsener B, Pedeferri P, Redaelli E, Polder R (2013) Corrosion of steel in concrete: prevention, diagnosis, repair, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  54. Li L, Sagüés AA (2002) Chloride corrosion threshold of reinforcing steel in alkaline solutions—cyclic polarization behavior. Corrosion 58(4):305–316

    Google Scholar 

  55. Alonso C, Castellote M, Andrade C (2002) Chloride threshold dependence of pitting potential of reinforcements. Electrochim Acta 47:3469–3481

    Google Scholar 

  56. Presuel-Moreno F, Sagüés AA, Kranc SC (2005) Steel activation in concrete following interruption of long-term cathodic polarization. Corrosion 61(5):428–436

    Google Scholar 

  57. Manera M, Vennesland Ø, Bertolini L (2008) Chloride threshold for rebar corrosion in concrete with addition of silica fume. Corros Sci 50(2):554–560

    Google Scholar 

  58. Ghods P (2010) Multi-scale investigation of the formation and breakdown of passive films on carbon steel rebar in concrete. Carleton University, Ottawa

    Google Scholar 

  59. Bertolini L, Gastaldi M (2011) Corrosion resistance of low-nickel duplex stainless steel rebars. Mater Corros 62(2):120–129

    Google Scholar 

  60. Figueira RB, Sadovski A, Melo AP, Pereira EV (2017) Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: the influence of surface finishing and pH. Constr Build Mater 141:183–200

    Google Scholar 

  61. Alar V, Barsic G, Runje B, Alar Z (2012) The influence of the surface finishing on the electrochemical behaviour of austenitic and superaustenitic steels. Materialwiss Werkst 43(8):725–732

    Google Scholar 

  62. Hansson CM, Sørensen B (1990) The threshold concentration of chloride in concrete for the initiation of reinforcement corrosion. In Berke NS, Chaker V, Whiting D (eds) Corrosion rates of steel in concrete. ASTM STP 1065, pp 3–16

  63. Pettersson K (1992) Corrosion threshold value and corrosion rate in reinforced concrete. Swedish Cement and Concrete Research Institute, Stockholm

    Google Scholar 

  64. Sandberg P, Pettersson K, Sørensen HE, Arup H (1997) Critical chloride concentrations for the onset of active reinforcement corrosion. RILEM, St-Remy-Les-Chevreuses

    Google Scholar 

  65. Breit W (2001) Critical corrosion inducing chloride content—state of the art and new investigation results. Verein Deutscher Zementwerke e.V., Verlag Bau + Technik, Düsseldorf

    Google Scholar 

  66. Oh BH, Jang SY, Shin YS (2003) Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures. Mag Concr Res 55(2):117–124

    Google Scholar 

  67. Li Y, Zhu Y, Zhu X, Ge Y, Stirnemann L (2007) Chloride ion critical content in reinforced concrete. J Wuhan Univ Technol Mater Sci Ed 22(4):737–740

    Google Scholar 

  68. Polder R (2009) Critical chloride content for reinforced concrete and its relationship to concrete resistivity. Mater Corros 60(8):623–630

    Google Scholar 

  69. Meira GR, Andrade C, Vilar EO, Nery KD (2014) Analysis of chloride threshold from laboratory and field experiments in marine atmosphere zone. Constr Build Mater 55:289–298

    Google Scholar 

  70. Schiessl P, Breit W (1996) Local repair measures at concrete structures damaged by reinforcement corrosion—aspects of durability. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  71. Thomas M (1996) Chloride threshold in marine concrete. Cem Concr Res 26:513–519

    Google Scholar 

  72. Breit W (1998) Kritischer korrosionsauslösender Chloridgehalt - Neuere Untersuchungsergebnisse (Teil 2). 8:511

  73. Ryou JS, Ann KY (2008) Variation in the chloride threshold level for steel corrosion in concrete arising from different chloride sources. Mag Concr Res 60(3):177–187

    Google Scholar 

  74. Pillai RG, Gettu R, Santhanam M, Rengaraju S, Dhandapani Y, Rathnarajan S, Basavaraj AS (2019) Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem Concr Res 118:111–119

    Google Scholar 

  75. Hussain SE, Rasheeduzzafar A, Al-Musallam A, Al-Gahtani AS (1995) Factors affecting threshold chloride for reinforcement corrosion in concrete. Cem Concr Res 25:1543–1555

    Google Scholar 

  76. Monticelli C, Natali ME, Balbo A, Chiavari C, Zanotto F, Manzi S, Bignozzi MC (2016) Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization. Cem Concr Res 80:60–68

    Google Scholar 

  77. Babaee M, Castel A (2018) Chloride diffusivity, chloride threshold, and corrosion initiation in reinforced alkali-activated mortars: role of calcium, alkali, and silicate content. Cem Concr Res 111:56–71

    Google Scholar 

  78. Holloway M, Sykes JM (2005) Studies of the corrosion of mild steel in alkali-activated slag cement mortars with sodium chloride admixtures by a galvanostatic pulse method. Corros Sci 47(12):3097–3110

    Google Scholar 

  79. Criado M, Provis JL (2018) Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel. Front Mater 5:34

    Google Scholar 

  80. Ma QM, Nanukuttan SV, Basheer PAM, Bai Y, Yang CH (2016) Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes. Mater Struct 49(9):3663–3677

    Google Scholar 

  81. Mundra S, Bernal S, Criado M, Hlaváček P, Ebell G, Reinemann S, Gluth GJ, Provis J (2017) Steel corrosion in reinforced alkali-activated materials RILEM Techn Lett 2:33–39

    Google Scholar 

  82. Monfore GE, Verbeck GJ (1960) Corrosion of prestressed wire in concrete. J Am Concr Inst 57:491–515

    Google Scholar 

  83. Glass GK, Reddy B (2002) The influence of the steel concrete interface on the risk of chloride induced corrosion initiation. In: Proceedings of corrosion of steel in reinforced concrete structures, COST 521, Final Workshop, Luxembourgh, 18–19 Febrary 2002, pp 227–232

  84. Castel A, Vidal T, François R, Arliguie G (2003) Influence of steel-concrete interface quality on reinforcement corrosion induced by chlorides. Mag Concr Res 55(2):151–159

    Google Scholar 

  85. Buenfeld NR, Glass GK, Reddy B, Viles RF (2004) Process for the protection of reinforcement in reinforced concrete. U.S. Patent 6,685,822 B2

  86. Nam JG, Hartt WH, Kim K (2005) Effects of air void at the steel-concrete interface on the corrosion Initiation of reinforcing steel in concrete under chloride exposure. J Korea Concr Inst 17(5):829–834

    Google Scholar 

  87. Ann KY, Buenfeld NR (2007) The effect of calcium nitrite on the chloride-induced corrosion of steel in concrete. Mag Concr Res 59(9):689–697

    Google Scholar 

  88. Reddy B (2001) Influence of the steel-concrete interface on the chloride threshold level. Ph.D. thesis, Imperial College, London

  89. Glass GK, Reddy B, Clark LA (2007) Making reinforcement concrete immune from chloride corrosion. Proc Inst Civ Eng Constr Mater 160:155–164

    Google Scholar 

  90. Angst U (2011) Chloride induced reinforcement corrosion in concrete. Concept of critical chloride content—methods and mechanisms. Norwegian University of Science and Technology, NTNU, Trondheim

    Google Scholar 

  91. Angst U, Wagner C, Elsener B, Leemann A, van Nygaard P (2016) Methode zur Bestimmung des kritischen Chloridgehalts an bestehenden Stahlbetonbauwerken, Research project ASTRA AGB 2012/010, report no. 677

  92. Kosalla M, Raupach M (2016) Chloride-induced depassivation of steel in concrete—influence of electrochemical potential and anodic polarization level. In: Proceedings of service life and durability of reinforced concrete structures, Marne-la-Vallée, France, pp 107–125

  93. Käthler CB, Angst UM, Aguilar AM, Elsener B (2019) A systematic data collection on chloride-induced steel corrosion in concrete to improve service life modelling and towards understanding corrosion initiation. Corros Sci 157:331–336

    Google Scholar 

  94. Kosalla M, Raupach M (2016) Potential differences between passive reinforcement segments in concrete components in dependency of binder type, aeration conditions and quality of the steel/concrete-interface. Mater Corros 67(6):639–651

    Google Scholar 

  95. Yu LW, François R, Dang VH, L’Hostis V, Gagne R (2015) Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: effect of load-induced cracks, concrete cover, and exposure conditions. Cem Concr Res 67:246–258

    Google Scholar 

  96. Harnisch J, Raupach M (2011) Untersuchungen zum kritischen korrosionsauslösenden Chloridgehalt unter Berücksichtigung der Kontaktzone zwischen Stahl und Beton. Beton- und Stahlbetonbau 106(5):299–307

    Google Scholar 

  97. Horne AT, Richardson IG, Brydson RMD (2007) Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cem Concr Res 37(12):1613–1623

    Google Scholar 

  98. Angst UM, Boschmann C, Wagner M, Elsener B (2017) Experimental protocol to determine the chloride threshold value for corrosion in samples taken from reinforced concrete structures. J Vis Exp 126:56229

    Google Scholar 

  99. Zhang W, François R, Yu L (submitted) Influence of top-casting-induced defects on the corrosion of the longitudinal reinforcement of naturally corroded beams exposed to chloride environment under sustained loading: case of tensile reinforcement

  100. Gehlen C, Sodeikat C (2003) Cracked reinforced concrete: what about corrosion risk? Mater Corros 54(6):424–429

    Google Scholar 

  101. Gehlen C (2004) Influence of cracks upon corrosion. European Union—Fifth Framework Pro-gramme, GROWTH 2000. Contract G1RD-CT-2000-00467, Project GRD1-25633, Report R4 of Workpackage 2.1

  102. Pease BJ (2010) Influence of concrete cracking on ingress and reinforcement corrosion. Ph.D. thesis, Technical University of Denmark

  103. Boschmann C, Angst UM, Wagner M, Larsen CK, Elsener B (2017) Effect of cracks on chloride-induced corrosion of steel in concrete—a review (NPRA report no. 454)

  104. Rodriguez OG, Hooton RD (2003) Influence of cracks on chloride ingress into concrete. ACI Mater J 100(2):120–126

    Google Scholar 

  105. Michel A, Solgaard AOS, Pease BJ, Geiker MR, Stang H, Olesen JF (2013) Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete. Corros Sci 77:308–321

    Google Scholar 

  106. Gautefall O, Vennesland Ø (1983) Effects of cracks on the corrosion of embedded steel in silica-concrete compared to ordinary concrete. Nordic Concr Res 2:17–28

    Google Scholar 

  107. Berke NS, Dallaire MP, Hicks MC, Hoopes RJ (1993) Corrosion of steel in cracked concrete. Corrosion 49(11):934–943

    Google Scholar 

  108. Schiessl P, Raupach M (1997) Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete. ACI Mater J 94(1):56–62

    Google Scholar 

  109. François R, Arliguie G (1999) Effect of microcracking and cracking on the development of corrosion in reinforced concrete members. Mag Concr Res 51(2):143–150

    Google Scholar 

  110. Mohammed TU, Otsuki N, Hisada M, Shibata T (2001) Effect of crack width and bar types on corrosion of steel in concrete. J Mater Civ Eng 13(3):194–201

    Google Scholar 

  111. Rehm G, Moll HL (1964) Versuche zum Studium des Einflußes der Rissbreite auf die Rostbildung an der Bewehrung von Stahlbetonbauteilen. Deutscher Ausschuss für Stahlbeton

  112. Schießl P (1976) Zur Frage der zulässigen Rissbreite und der erforderlichen Betondeckung im Stahlbetonbau unter besonderer Berücksichtigung der Karbonatisierung des Betons. Deutscher Ausschuss für Stahlbeton

  113. O’Neil EF (1980) Study of reinforced concrete beams exposed to marine environment. In: ACI Special Publication Nr. 65, pp 113–132

  114. Jaffer SJ, Hansson CM (2008) The influence of cracks on chloride-induced corrosion of steel in ordinary Portland cement and high performance concretes subjected to different loading conditions. Corros Sci 50(12):3343–3355

    Google Scholar 

  115. Pacheco J (2015) Corrosion of steel in cracked concrete. Ph.D. thesis, Delft University of Technology, The Netherlands

  116. Jang JW, Iwasaki I (1991) Rebar corrosion under simulated concrete conditions using galvanic current measurements. Corrosion 47(11):875–884

    Google Scholar 

  117. Stefanoni M, Angst U, Elsener B (2018) Corrosion challenges and opportunities in digital fabrication of reinforced concrete. In: Proceedings of 1st international conference on concrete and digital fabrication “Digital Concrete 2018”, 10–12 September 2018, Zurich, Switzerland

  118. Pettersson K (1996) Service life of concrete structures—in saline environment; CBI Report 3:96. CBI, Stockholm, Sweden

  119. Song X, Kong Q, Liu X (2007) Experimental study on chloride threshold levels in OPC. China Civ Eng J 40(11):59–63

    Google Scholar 

  120. Pettersson K (2018) Personal communication (23 July 2018)

  121. Sandberg P, Pettersson K (1997) In: Nilsson L-O, Ollivier JP (eds) Chloride penetration into concrete. RILEM Publications, France, pp 453–459

    Google Scholar 

  122. Sandberg P, Pettersson K (1997) Proceedings of durability of concrete IV, Detroit, USA, pp 933–947

  123. Sandberg P, Sørensen H (1999) Factors affecting the chloride thresholds for uncracked reinforced concrete exposed in a marine environment. Part II: laboratory- and field exposure of corrosion cells. Corros Eng Sci Technol 1(2):99–109

    Google Scholar 

  124. Arup H, Sørensen H (1997) A proposed technique for determining chloride thresholds. In: Proceedings of Chloride penetration into concrete, France, pp 460–469

  125. Sandberg P (1995) Critical evaluation of factors affecting chloride initiated reinforcement corrosion in concrete, Report TVBM-3068. Lund Institute of Technology, Building Materials, Lund, Sweden

  126. Tuutti K (1982) Corrosion of steel in concrete. KTH, Kungliga Tekniska Högskolan i Stockholm. Swedish Cement and Concrete Research Institute, Stockholm, ISSN 0346-6906

  127. Karadakis K, Azad VJ, Ghods P, Isgor OB (2016) Numerical investigation of the role of mill scale crevices on the corrosion initiation of carbon steel reinforcement in concrete. J Electrochem Soc 163(6):C306–C315

    Google Scholar 

  128. Burstein GT, Pistorius PC (1995) Surface-roughness and the metastable pitting of stainless-steel in chloride solutions. Corrosion 51(5):380–385

    Google Scholar 

  129. Akhoondan M, Sagüés A (2012) Comparative cathodic behavior of ~9% Cr and plain steel reinforcement in concrete. Corrosion 68:1–10

    Google Scholar 

  130. Avilamendoza J, Flores JM, Castillo UC (1994) Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete. Corrosion 50(11):879–885

    Google Scholar 

  131. Stefanoni M, Angst U, Elsener B (2015) Local electrochemistry of reinforcement steel—distribution of open circuit and pitting potentials on steels with different surface condition. Corros Sci 98:610–618

    Google Scholar 

  132. Burstein GT, Ilevbare GO (1996) The effect of specimen size on the measured pitting potential of stainless steel. Corros Sci 38(12):2257–2265

    Google Scholar 

  133. Li L, Sagüés AA (2004) Chloride corrosion threshold of reinforcing steel in alkaline solutions—effect of specimen size. Corrosion 60(2):195–202

    Google Scholar 

  134. Hornbostel K, Angst UM, Elsener B, Larsen CK, Geiker MR (2015) On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements. Cem Concr Res 76:147–158

    Google Scholar 

  135. Angst U, Vennesland Ø (2009) Detecting critical chloride content in concrete using embedded ion selective electrodes—effect of liquid junction and membrane potentials. Mater Corros 60(8):638–643

    Google Scholar 

  136. Pourbaix A (1984) Localized corrosion: behaviour and protection mechanisms. In: Proceedings of corrosion chemistry within pits, crevices and cracks, Teddington, Middlesex, pp 1–15

  137. Angst U, Elsener B, Larsen CK, Vennesland Ø (2011) Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion. Electrochim Acta 56(17):5877–5889

    Google Scholar 

  138. Burstein GT, Pistorius PC, Mattin SP (1993) The nucleation and growth of corrosion pits on stainless steel. Corros Sci 35(1–4):57–62

    Google Scholar 

  139. Pistorius PC, Burstein GT (1992) Metastable pitting corrosion of stainless steel and the transition to stability. Philos Trans R Soc Lond 341:531–559

    Google Scholar 

  140. Tokunaga TK, Finsterle S, Kim Y, Wan JM, Lanzirotti A, Newville M (2017) Ion diffusion within water films in unsaturated porous media. Environ Sci Technol 51(8):4338–4346

    Google Scholar 

  141. Walsh MT, Sagüés AA (2016) Steel corrosion in submerged concrete structures-part 1: field observations and corrosion distribution modeling. Corrosion 72(4):518–533

    Google Scholar 

  142. Walsh MT, Sagüés AA (2016) Steel corrosion in submerged concrete structures-part 2: modeling of corrosion evolution and control. Corrosion 72(5):665–678

    Google Scholar 

  143. Fagerlund G (2006) Moisture design with regards to durability—with special reference to frost destruction. Lund University, Lund

    Google Scholar 

  144. Ryu DW, Ko JW, Noguchi T (2011) Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete. Cem Concr Compos 33(1):142–153

    Google Scholar 

  145. Flint M, Michel A, Billington SL, Geiker MR (2014) Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete. Mater Struct 47(4):729–748

    Google Scholar 

  146. Relling RH (1999) Coastal concrete bridges: moisture state, chloride permeability and aging effects. Norwegian University of Science and Technology (NTNU), Trondheim

    Google Scholar 

  147. Moro F (2003) Modeling of humidity-transport in concrete. Ph.D. thesis, no. 14984. ETH Zurich. Zurich, Switzerland

  148. Diamond S (1981) Effects of two danish flyashes on alkali contents of pore solutions of cement-flyash pastes. Cem Concr Res 11:383–394

    Google Scholar 

  149. Page CL, Vennesland Ø (1983) Pore solution composition and chloride binding capacity of silica fume-cement pastes. Mater Struct 19:19–25

    Google Scholar 

  150. Scrivener KL, Crumbie AK, Laugesen P (2004) The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci 12(4):411–421

    Google Scholar 

  151. Alonso MC, García Calvo JL, Sánchez M, Fernández AI (2012) Ternary mixes with high mineral additions contents and corrosion related properties. Mater Corros 63(12):1078–1086

    Google Scholar 

  152. Larsen CK (1998) Chloride binding in concrete. Dr. Ing. Thesis, Norwegian University of Science and Technology, NTNU, Trondheim

Download references

Acknowledgements

We acknowledge the input provided by all TC members attending the discussions of the TC meetings on 22 October 2017 (Philadelphia, U.S.), 7 April 2017 (Paris, France), 14 September 2017 (Zurich, Switzerland), 14 October 2017 (Anaheim, U.S.), 27 March 2018 (Sheffield, UK), 28 August 2018 (Delft, the Netherlands), 21 February 2019 (Zurich, Switzerland), and 19 March 2019 (Rovinj, Croatia). Additionally, we acknowledge the so far unpublished results that were provided by Raoul François from Université de Toulouse, France (Fig. 5), and by Carolina Boschmann from ETH Zurich, Switzerland (Figs. 8, 9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli M. Angst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been prepared within a framework of RILEM TC 262-SCI. The article has been reviewed and approved by all TC members.

TC Chair: Ueli M. Angst.

Deputy Chair: Mette R. Geiker.

TC Members: Johan Ahlström, Mark Alexander, Ueli Angst, Christian Christodoulou, Maria Joao Correia, Maria Criado, Maria Cruz Alonso, Bernhard Elsener, Raoul François, Christoph Gehlen, Mette Geiker, Joost Gulikers, Carolyn Hansson, Karla Hornbostel, Burkan Isgor, Marc Kosalla, Andraz Legat, Kefei Li, Victor Marcos Meson, Alexander Michel, Shishir Mundra, Mike Otieno, José Pacheco Farias, Farhad Pargar, Radhakrishna Pillai, Rob Polder, Michael Raupach, Alberto Sagüés, Henrik Erndahl Sørensen, Luping Tang, David Trejo, Elsa Vaz Pereira, Talakokula Visalakshi, Hong Wong, Linwen Yu, Yuxi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angst, U.M., Geiker, M.R., Alonso, M.C. et al. The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI. Mater Struct 52, 88 (2019). https://doi.org/10.1617/s11527-019-1387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1387-0

Keywords

Navigation