Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 29, 2011

Quantitative and kinetic profile of Wnt/β-catenin signaling components during human neural progenitor cell differentiation

  • Orianne Mazemondet EMAIL logo , Rayk Hubner , Jana Frahm , Dirk Koczan , Benjamin Bader , Dieter Weiss , Adelinde Uhrmacher , Moritz Frech , Arndt Rolfs and Jiankai Luo

Abstract

ReNcell VM is an immortalized human neural progenitor cell line with the ability to differentiate in vitro into astrocytes and neurons, in which the Wnt/β-catenin pathway is known to be involved. However, little is known about kinetic changes of this pathway in human neural progenitor cell differentiation. In the present study, we provide a quantitative profile of Wnt/β-catenin pathway dynamics showing its spatio-temporal regulation during ReNcell VM cell differentiation. We show first that T-cell factor dependent transcription can be activated by stabilized β-catenin. Furthermore, endogenous Wnt ligands, pathway receptors and signaling molecules are temporally controlled, demonstrating changes related to differentiation stages. During the first three hours of differentiation the signaling molecules LRP6, Dvl2 and β-catenin are spatio-temporally regulated between distinct cellular compartments. From 24 h onward, components of the Wnt/β-catenin pathway are strongly activated and regulated as shown by mRNA up-regulation of Wnt ligands (Wnt5a and Wnt7a), receptors including Frizzled-2, -3, -6, -7, and -9, and co-receptors, and target genes including Axin2. This detailed temporal profile of the Wnt/β-catenin pathway is a first step to understand, control and to orientate, in vitro, human neural progenitor cell differentiation.

[1] Lindvall, O., Kokaia, Z. and Martinez-Serrano, A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med. 10Suppl (2004) S42–50. http://dx.doi.org/10.1038/nm106410.1038/nm1064Search in Google Scholar PubMed

[2] Clelland, C.D., Barker, R.A. and Watts, C. Cell therapy in Huntington disease. Neurosurg. Focus 24 (2008) E9. http://dx.doi.org/10.3171/FOC/2008/24/3-4/E810.3171/FOC/2008/24/3-4/E8Search in Google Scholar PubMed

[3] Locatelli, F., Bersamo, A., Ballabio, E., Lanfranconi, S., Papdimitriou, D., Strazzer, S., Bresolin, N., Comi, G.P. and Corti, S. Stem cell therapy in stroke. Cell. Mol. Life Sci. 66 (2009) 757–772. http://dx.doi.org/10.1007/s00018-008-8346-110.1007/s00018-008-8346-1Search in Google Scholar PubMed

[4] Donato, R., Miljan, E.A., Hines, S.J., Aouabdi, S., Pollock, K., Patel, S., Edwards, F.A. and Sinden, J.D. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci. 8 (2007) 36. http://dx.doi.org/10.1186/1471-2202-8-3610.1186/1471-2202-8-36Search in Google Scholar PubMed PubMed Central

[5] Hoffrogge, R., Mikkat, S., Scharf, C., Beyer, S., Christoph, H., Pahnke, J., Mix, E., Berth, M., Uhrmacher, A., Zubrzycki, I.Z., Miljan, E., Völker, U. and Rolfs, A. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM). Proteomics 6 (2006) 1833–1847. http://dx.doi.org/10.1002/pmic.20050055610.1002/pmic.200500556Search in Google Scholar PubMed

[6] Morgan, P.J., Ortinau, S., Frahm, J., Kruger, N., Rolfs, A. and Frech, M.J. Protection of neurons derived from human neural progenitor cells by veratridine. Neuroreport 20 (2009) 1225–1229. http://dx.doi.org/10.1097/WNR.0b013e32832fbf4910.1097/WNR.0b013e32832fbf49Search in Google Scholar PubMed

[7] Logan, C.Y. and Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20 (2004) 781–810. http://dx.doi.org/10.1146/annurev.cellbio.20.010403.11312610.1146/annurev.cellbio.20.010403.113126Search in Google Scholar PubMed

[8] Komiya, Y. and Habas, R. Wnt signal transduction pathways. Organogenesis 4 (2008) 68–75. http://dx.doi.org/10.4161/org.4.2.585110.4161/org.4.2.5851Search in Google Scholar PubMed PubMed Central

[9] Hirabayashi, Y., Itoh, Y., Tabata, H., Nakajima, K., Akiyama, T., Masuyama, N. and Gotoh, Y. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131 (2004) 2791–2801. http://dx.doi.org/10.1242/dev.0116510.1242/dev.01165Search in Google Scholar PubMed

[10] Mutoyama, Y., Kondoh, H. and Takada, S. Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem. Biophys. Res. Commun. 313 (2004) 915–921. http://dx.doi.org/10.1016/j.bbrc.2003.12.02310.1016/j.bbrc.2003.12.023Search in Google Scholar PubMed

[11] Castelo-Branco, G., Wagner, J., Rodriguez, F.J., Kele, J., Sousa, K., Rawal, N., Pasolli, H.A., Fuchs, E., Kitajewski, J. and Arenas, E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl. Acad. Sci. USA 100 (2003) 12747–12752. http://dx.doi.org/10.1073/pnas.153490010010.1073/pnas.1534900100Search in Google Scholar

[12] Kholodenko B.N. Cell-signaling dynamics in time and space. Nat. Rev. Mol. Cell. Biol. 7 (2006) 165–176. http://dx.doi.org/10.1038/nrm183810.1038/nrm1838Search in Google Scholar

[13] Nakamura, T., Sano, M., Songyang, Z. and Schneider, M.D. A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc. Natl. Acad. Sci. USA 100 (2003) 5834–5839. http://dx.doi.org/10.1073/pnas.093562610010.1073/pnas.0935626100Search in Google Scholar

[14] Hübner, R., Schmöle, A.C., Liedmann, A., Frech, M.J., Rolfs, A. and Luo, J. Differentiation of human neural progenitor cells regulated by Wnt-3a. Biochem. Biophys. Res. Commun. 400 (2010) 358–362. http://dx.doi.org/10.1016/j.bbrc.2010.08.06610.1016/j.bbrc.2010.08.066Search in Google Scholar

[15] Schmöle, A.C., Brenführer, A., Karapetyan, G., Jaster, R., Pews_Davtyan, A., Hübner, R., Ortinau, S., Beller, M., Rolfs, A. and Frech, M.J. Novel indolylmaleimide acts as GSK-3β inhibitor in human neural progenitor cells. Bioorg. Med. Chem. 18 (2010) 6785–6795. http://dx.doi.org/10.1016/j.bmc.2010.07.04510.1016/j.bmc.2010.07.045Search in Google Scholar

[16] Klipp, E. and Liebermeister, W. Mathematical modeling of intracellular signalling pathways. BMC Neuroscience 7 (2006) S10. http://dx.doi.org/10.1186/1471-2202-7-S1-S1010.1186/1471-2202-7-S1-S10Search in Google Scholar

[17] Mazemondet, O., John, M., Maus, C., Uhrmacher A. and Rolfs, A. Integrating diverse reaction types into stochastic models — a signaling pathway case study in the imperative pi-Calculus. In: Proceedings of Winter Simulation Conference, 2009, 931–943. 10.1109/WSC.2009.5429723Search in Google Scholar

[18] Pfaffl, M.W. A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res. 29 (2001) e45. http://dx.doi.org/10.1093/nar/29.9.e4510.1093/nar/29.9.e45Search in Google Scholar

[19] Ohl, F., Jung, M., Radonic, A., Sachs, M., Loening, S.A. and Jung, K. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J. Urol. 175 (2006) 1915–1920. http://dx.doi.org/10.1016/S0022-5347(05)00919-510.1016/S0022-5347(05)00919-5Search in Google Scholar

[20] Schiling, M., Maiwald, T., Bohl, S., Kollmann, M., Kreuts, C., Timmer, J. and Klinmüller, U. Computational processing and error reduction strategies for standardized quantitative data in biological networks. FEBS J. 272 (2005) 6400–6411. http://dx.doi.org/10.1111/j.1742-4658.2005.05037.x10.1111/j.1742-4658.2005.05037.xSearch in Google Scholar PubMed

[21] Angers, S. and Moon, R.T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10 (2009) 468–477. 10.1038/nrm2717Search in Google Scholar

[22] Stambolic, V., Ruel, L. and Woodgett, J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 6 (1996) 1664–1668. http://dx.doi.org/10.1016/S0960-9822(02)70790-210.1016/S0960-9822(02)70790-2Search in Google Scholar

[23] Jho, E.H., Zhang, T., Domon, C., Joo, C.K., Freund, J.N. and Costantini, F. Wnt/beta-catenin/Tcf signalling induces the transcription of Axin2, a negative regulator of the signalling pathway. Mol. Cell Biol. 22 (2002) 1172–1183. http://dx.doi.org/10.1128/MCB.22.4.1172-1183.200210.1128/MCB.22.4.1172-1183.2002Search in Google Scholar

[24] Blagosklonny, M.V. and Pardee, A.B. The restriction point of the cell cycle. Cell Cycle 1 (2002) 103–110. Search in Google Scholar

[25] Li, Y., Wenyan L., Xi, H. and Guojun, B. Modulation of LRP6-mediated Wnt signaling by molecular chaperone Mesd. FEBS Lett. 580 (2006) 5423–5428. http://dx.doi.org/10.1016/j.febslet.2006.09.01110.1016/j.febslet.2006.09.011Search in Google Scholar

[26] Tamai, K., Zeng, X., Liu, C., Zhang, X., Harada, Y., Chang, Z. and He, X. A mechanism for Wnt coreceptor activation. Mol. Cell 13 (2004) 149–156. http://dx.doi.org/10.1016/S1097-2765(03)00484-210.1016/S1097-2765(03)00484-2Search in Google Scholar

[27] Khan, Z., Vijayakumar, S., De La Torre, T.V., Rotolo, S. and Bafico, A. Analysis of endogenous LRP6 function reveals a novel feedback mechanism by which Wnt negatively regulates its receptor. Mol. Cell Biol. 27 (2007) 7291–7301. http://dx.doi.org/10.1128/MCB.00773-0710.1128/MCB.00773-07Search in Google Scholar

[28] Winer, J., Jung, C.K., Shackel, I. and Williams, P.M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270 (1999) 41–49. http://dx.doi.org/10.1006/abio.1999.408510.1006/abio.1999.4085Search in Google Scholar

[29] Willems, E., Mateizel, I., Kemp, C., Gauffman, G., Sermon, K. and Leyns, L. Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int. J. Dev. Biol. 50 (2006) 627–635. http://dx.doi.org/10.1387/ijdb.052130ew10.1387/ijdb.052130ewSearch in Google Scholar

[30] Semenov, M.V., Tamai, K., Brott, B.K., Kuehl, M., Sokol, S. and He, X. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11 (2001) 951–961. http://dx.doi.org/10.1016/S0960-9822(01)00290-110.1016/S0960-9822(01)00290-1Search in Google Scholar

[31] Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B.M., Delius, H., Hoppe, D., Stannek, P., Walter, C., Glinka, A. and Niehrs, C. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417(6889) (2004) 664–667. http://dx.doi.org/10.1038/nature75610.1038/nature756Search in Google Scholar PubMed

[32] Semenov, M.V., Zhang, X. and He, X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 283 (2008) 21427–21432. http://dx.doi.org/10.1074/jbc.M80001420010.1074/jbc.M800014200Search in Google Scholar PubMed PubMed Central

[33] Yoshikawa, H., Matsubara, K., Zhou, X., Okumara, S., Kubo, T., Murase, Y., Shikauchi, Y., Esteller, M., Herman, J.G., Wei, X. and Harris, C.C. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer. Mol. Biol. Cell 18 (2007) 4292–4303. http://dx.doi.org/10.1091/mbc.E06-10-088910.1091/mbc.e06-10-0889Search in Google Scholar PubMed PubMed Central

[34] Kirikoshi, H. and Katoh, M. Expression and regulation of WNT10B in human cancer: up-regulation of WNT10B in MCF-7 cells by beta-estradiol and down-regulation of WNT10B in NT2 cells by retinoic acid. Int. J. Mol. Med. 10 (2002) 507–511. Search in Google Scholar

[35] Ishikawa, T., Tamai, Y., Zorn, A.M., Yoshida, H., Seldin, M.F., Nishikawa, S. and Taketo, M.M. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placenta angiogenesis. Development 128 (2001) 25–33. Search in Google Scholar

[36] Snow, G.E., Kasper, A.C., Busch, A.M., Schwarz, E., Ewings, K.E., Bee, T., Spinella, M.J., Dmitrovsky, E. and Freemantle, S.J. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting. BMC Cancer 9 (2009) 83. http://dx.doi.org/10.1186/1471-2407-9-38310.1186/1471-2407-9-383Search in Google Scholar PubMed PubMed Central

[37] van Amerongen, R., Mikels, A. and Nusse, R. Alternative Wnt signaling is initiated by distinct receptors. Sci. Signal. 1 (2008) re9. http://dx.doi.org/10.1126/scisignal.135re910.1126/scisignal.135re9Search in Google Scholar PubMed

[38] Caricasole, A., Ferraro, T., Iacovelli, L., Barletta, E., Caruso, A., Melchiorri, D., Terstappen G.C. and Nicoletti, F. Functional characterization of WNT7A signaling in PC12 cells: interaction with a FZD5-LRP6 receptor complex and modulation by Dickkopf proteins. J. Biol. Chem. 278 (2003) 37024–37031. http://dx.doi.org/10.1074/jbc.M30019120010.1074/jbc.M300191200Search in Google Scholar PubMed

[39] Carmon, K.S. and Loose, D.S. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells. Mol. Cancer Res. 6 (2008) 1017–1028. http://dx.doi.org/10.1158/1541-7786.MCR-08-003910.1158/1541-7786.MCR-08-0039Search in Google Scholar PubMed

[40] Le Grand, F., Jones, A.E., Seale, V., Scime, A. and Rudnicki, M.A. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4 (2009) 535–547. http://dx.doi.org/10.1016/j.stem.2009.03.01310.1016/j.stem.2009.03.013Search in Google Scholar PubMed PubMed Central

[41] Yang, Y., Topol, L., Lee, H. and Wu, J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130 (2003) 1003–1015. http://dx.doi.org/10.1242/dev.0032410.1242/dev.00324Search in Google Scholar PubMed

[42] Castelo-Brance, G., Sousa, K.M., Bryja, V., Pinto, L., Wagner, J. and Arenas, E. Ventral midbrain glia express region-specific transcription factors and regulate dopaminergic neurogenesis through Wnt-5a secretion. Mol. Cell Neurosci. 31 (2006) 251–262. http://dx.doi.org/10.1016/j.mcn.2005.09.01410.1016/j.mcn.2005.09.014Search in Google Scholar PubMed

[43] Beagle, B., Mi, K. and Johnson, G.V.W. Phosphorylation of PPP(S/Y)P motif of the free LRP6 intracellular domains is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity. J. Cell Biochem. 108 (2009) 886–895. http://dx.doi.org/10.1002/jcb.2231810.1002/jcb.22318Search in Google Scholar PubMed PubMed Central

[44] Wu, G., Huang, H., Abreu, J.G. and He, X. Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PloS One 4 (2009) e4926. http://dx.doi.org/10.1371/journal.pone.000492610.1371/journal.pone.0004926Search in Google Scholar PubMed PubMed Central

[45] Bryja, V., Schulte, G. and Arenas, E. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate beta-catenin. Cell Signal. 19 (2007b) 610–616. http://dx.doi.org/10.1016/j.cellsig.2006.08.01110.1016/j.cellsig.2006.08.011Search in Google Scholar PubMed

[46] Yokoyama, N., Yin, D. and Malbon, C.C. Abundance, complexation, and trafficking of Wnt/beta-catenin signaling elements in response to Wnt3. J. Mol. Signal. 2 (2007) 11. http://dx.doi.org/10.1186/1750-2187-2-1110.1186/1750-2187-2-11Search in Google Scholar PubMed PubMed Central

[47] Müller, H.A., Samanta, R. and Wieschaus, E. Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development 126 (1999) 577–586. Search in Google Scholar

[48] Cadigan, K.M. and Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11 (1997) 3286–3305. http://dx.doi.org/10.1101/gad.11.24.328610.1101/gad.11.24.3286Search in Google Scholar PubMed

[49] Sato, A., Kojima, T., Ui-Tei, K., Miyata, Y. and Saigo, K. Frizzled-3, a new Drosophila Wnt receptor, acting as an attenuator of Wingless signaling in wingless hypomorphic mutants. Development 126 (1999) 4421–4430. Search in Google Scholar

[50] Lustig, B., Jerchow, B., Sachs, M., Weiler, S., Pietsch, T., Karsten, U., van de Wetering, M., Clevers, H., Schlag, P.M., Birchmeier, W. and Behrens, J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol. 22 (2004) 1184–1193. http://dx.doi.org/10.1128/MCB.22.4.1184-1193.200210.1128/MCB.22.4.1184-1193.2002Search in Google Scholar PubMed PubMed Central

Published Online: 2011-9-29
Published in Print: 2011-12-1

© 2011 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-011-0021-0/html
Scroll to top button