Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Laser-Speckle-Photometry – A Method for Non-Contact Evaluation of Material Damage, Hardness and Porosity

Laser-Speckle-Photometrie – Eine Methode für kontaktlose Charakterisierung der Materialermüdung, Härte und Porosität
  • Ulana Cikalova , Beatrice Bendjus and Jürgen Schreiber
From the journal Materials Testing

Abstract

The Laser Speckle Photometry is a newly developed non-contact non-destructive testing method which is based on the detection and analysis of thermal or mechanical activated characteristically speckle dynamics. The determination of the material damaged state is based on the understanding of structural changes on different scaling levels given by the physical mesomechanics. The hierarchical behavior of the mesomechanical structures (meso-structures) leads to the hypothesis of the fractal nature of the deformation structure. The fractal dimension DF is a suitable parameter to characterize the fatigued material state. In the case of the laser speckle photometry method the modified auto-correlation function from the pixel intensity changes of the speckles images was used for the computation of Parameter DF. The hardness or porosity of materials is defined by micro-structural variation and is combined with several thermal properties of the material. Therefore the speckle thermal diffusivity parameter K was determined using thermal conduction equation from the pixel intensity of speckle images changes during thermal activation. Afterwards correlation between the norm K and hardness and porosity, respectively was found. Results of this research will be presented in the present contribution.

Kurzfassung

Die Laser-Speckle-Photometrie ist ein neues berührungsloses zerstörungsfreies Prüfverfahren, welches auf der Erkennung und Analyse der thermisch oder mechanisch aktivierten charakteristischen Speckle-Dynamik basiert. Die Bestimmung des Schädigungszustandes des Materials beruht auf dem Verständnis der strukturellen Veränderungen auf unterschiedlichen Skalen, welche die physikalische Mesomechanik beschreibt. Das hierarchische Verhalten der mesomechanischen Strukturen (Meso-Strukturen) führt zu der Hypothese, dass diese Strukturen von einer fraktalen Natur sind. Dementsprechend lässt sich die Materialermüdung anhand des Parameters der fraktalen Dimension DF zu bewerten. Im Fall der Laser-Speckle-Photometrie wird eine modifizierte Autokorrelationsfunktion der Pixelintensität einer Speckles-Videosequenz für die Berechnung des Parameters DF verwendet. Die Härte oder Porosität ist haupsächlich durch die Mikrostruktur eines Materials definiert und ist mit thermischen Eigenschaften des Materials verbunden. Deshalb wurde der Parameter K, welcher ein Maß für die Speckle-Temperaturleitfähigkeit des Werkstoffes darstellt, mittels Wärmegleichung von der Pixelintensität der Speckle-Änderungen während der thermischen Aktivierung berechnet. Es wurde eine Korrelation zwischen dem Parameter K und der Härte bzw. Porosität gefunden. Die Ergebnisse dieser Forschung werden in dem vorliegenden Beitrag vorgestellt werden.


Dipl.-Ing. Ulana Cikalova studied material science at the Technical University of Dresden until 2005. Since finishing her studies, she is a researcher and Ph.D. candidate at the Fraunhofer Institute for Nondestructive Testing Dresden and the Leibniz Institute for Solid State and Materials Research Branch Dresden. In her dissertation thesis she works with the topic “Evaluation of the material damage on basis of the fractal nature of electro-magnetic, thermo-optic and sound signals”.

Dr. Beatrice Bendjus studied and received her doctor's degree in the field of materials science at the TU Bergakademie Freiberg. She is active as a scientific officer at the Fraunhofer Institute for Nondestructive Testing Branch Dresden in the field of material characterization, especially with high-resolution methods since 1992.

Prof. Dr. Juergen Schreiber is a professor of theoretical physics. His scientific interests are structural characterization of different materials using X-ray, neutron and microscopic techniques; residual stress analysis by X-ray, neutron diffraction and magnetic methods; development of new approaches to estimate fatigue damage by non-destructive techniques; optical methods for online monitoring of the system components; development of nano-agents for structural and human health monitoring; studying cooperative phenomena of aging processes and development of new method for optical cancer diagnostics. Since 2009 he is Division Director of Condition Monitoring and Quality Assurance at the Fraunhofer Institute for Nondestructive Testing Branch Dresden.


References

1 V. E.Panin: Overview on mesomechanics of plastic deformation and fracture of solids, Theoretical and Applied Fracture Mechanics30 (1999), p.11110.1016/S0167-8442(98)00038-XSearch in Google Scholar

2 V. E.Panin (Editor): Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Cambridge International Science Publishing (1998)Search in Google Scholar

3 P. V.Kuznetsov, V. E.Panin, K. V.Levin, Ag.Pilnitsky, J.Schreiber: The states and characteristic scales of fractal mesostrucrure formation by the active tension of austenitic stainless steel, Physical Mesomechanics3 (2000) 4, pp. 8994Search in Google Scholar

4 J.Schreiber, U.Cikalova, Y.Vertyagina: Use of The Fractal Nature of Spatial and Temporal Response Behavior for Materials Damage Characterization, Proc. of the 6th Intern. Conference on Low Cycle Fatigue (2008), pp. 655660Search in Google Scholar

5 A.Sanchez-Lavega, A.Salazar, A.Ocariz, L.Pottier, E.Gomez, L. M.Villar, E.Macho: Thermal diffusivity measurement in porous ceramics, Appl. Phys. A65 (1997), pp. 152210.1007/s003390050534Search in Google Scholar

6 M.Takeda, W.Wang, N.Ishi, Y.Miyamoto: Small displacement measuring method and instruments, WO 2005/103610, 2007–04Search in Google Scholar

7 T.Satoru, M.Hitoshi: Deformation measurement method and device using electronic speckle interferometry, US6 943 870 B2, 2005-09-13Search in Google Scholar

8 Y.Sanichirou, R.Uideiasutoutei, AKusunouo, E. T.Asuutoutei: Method and Apparatus for extracting phase from speckle image of objekt to be inspected, 08105717, 1996-04-23Search in Google Scholar

9 U. S.Jang, D. W.Kim, D. I.Kwon: ESPI (Electronic Speckle Pattern Inferometry) system using high-magnification lens and zoom lens and method for measuring deformation of microelement using ESPI system, 1020020086020 A, 2002-11-18Search in Google Scholar

10 H. G.Walther, D.Fournier, J. C.Krapez, M.Luukkala, B.Schmitz, C.Sibilia, H.Stamm, J.Thoen: Pthotothermal Steel hardness Measurements- Results and Perspectives, Analytical Sciences17 (2001), Special Issue, pp. 165168Search in Google Scholar

11 D.Fournier, J. P.Roger, A.Bellouati, C.Boue, H.Stamm, F.Lakestani: Correlation between hardness and thermal diffusivity, Analytical Sciences17 (2001), Special Issue, pp. 158160Search in Google Scholar

12 J.Jaarrinen, A.Lehto, M.Luukkala: Photothermal measurement of the thickness of diffusion hardened surface layers in steel, Proc. of the Ultrasonics Symposium (1983), pp. 659663Search in Google Scholar

13 M.Bertollotti, R.Li Voti, G. L.Liakhou, S.Paoloni, C.Sibilia: Thermal charakterization of nonhomogeneous materials, Analytical Sciences17 (2001), Special Issue, pp. 8588Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-02-01

© 2012, Carl Hanser Verlag, München

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110299/html
Scroll to top button