Next Article in Journal
Zosteropenillines: Polyketides from the Marine-Derived Fungus Penicillium thomii
Previous Article in Journal
Brevianamides and Mycophenolic Acid Derivatives from the Deep-Sea-Derived Fungus Penicillium brevicompactum DFFSCS025
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Briarane Diterpenoids Isolated from Octocorals between 2014 and 2016

1
National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan
2
Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
3
Graduate Institute of Natural Products, College of Medicine, Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
4
Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
5
Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
6
Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan
7
Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
8
Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
*
Authors to whom correspondence should be addressed.
Mar. Drugs 2017, 15(2), 44; https://doi.org/10.3390/md15020044
Submission received: 27 January 2017 / Revised: 14 February 2017 / Accepted: 15 February 2017 / Published: 17 February 2017

Abstract

:
The structures, names, bioactivities, and references of 124 briarane-type natural products, including 66 new metabolites, isolated between 2014 and 2016 are summarized in this review article. All of the briarane diterpenoids mentioned in this review were isolated from octocorals, mainly from Briareum violacea, Dichotella gemmacea, Ellisella dollfusi, Junceella fragilis, Junceella gemmacea, and Pennatula aculeata. Some of these compounds exhibited potential biomedical activities, including anti-inflammatory activity, antibacterial activity, and cytotoxicity towards cancer cells.

1. Introduction

Following previous review articles from our research group focused on marine-origin briarane-type natural products [1,2,3,4,5], this review covers the literature from 2014 to January 2017, and describes 124 briarane-related diterpenoids (including 66 new metabolites), most of which are characterized by the presence of a γ-lactone moiety fused to a bicyclo[8.4.0] ring system, obtained from various octocorals (Figure 1), mainly Briareum violacea, Briareum spp. Dichotella gemmacea, Ellisella dollfusi, Junceella fragilis, Junceella gemmacea, and Pennatula aculeata. Many of these compounds exhibited interesting bioactivities in vitro, which might indicate a potential for use in biomedical applications. This survey of briarane-related compounds is presented taxonomically according to genus and species.

2. Alcyonacea

2.1. Briareum violacea (Family Briareidae)

The taxonomic position of octocorals affiliated with the genus Briareum (=Asbestia, Pachyclavularia, and Solenopodium) [6] has been found to be situated near the transition between Alcyonacea and Gorgonacea, in both taxonomic and chemical terms [6,7,8]. In 1977, briarein A, the first briarane-type diterpenoid identified, was isolated from the Caribbean octocoral Briareum asbestinum [9], and since then Briareum has been the main organism from which briarane-type natural products have been obtained.
Sixteen briarane diterpenoids, including 10 new 8-hydroxybriaranes, briaviolides A–J (110) (Figure 2), and six known metabolites, solenolides A [10] and D (=briaexcavatolide E) [1,10,11,12], excavatolide A [13], briaexcavatolide I [12], 4β-acetoxy-9-deacetylstylatulide lactone, and 9-deacetylstylatulide lactone [14], were isolated from the octocoral Briareum violacea, collected from the waters of Taiwan [15]. The structures of new briaranes 110 were established by chemical and spectroscopic methods, and determination of the absolute configuration of briaviolide A (1) was completed by X-ray diffraction analysis of its monobenzoyl derivative [15]. At a concentration of 10 μg/mL, briaranes 5 and 9 were found to exert moderate inhibitory activities on elastase release (inhibition rate = 26.0% and 28.8%, respectively) and superoxide anion production (inhibition rate = 34.2% and 28.7%, respectively) by human neutrophils [15].

2.2. Briareum sp.

In continuing chemical studies of the constituents of an octocoral identified as Briareum sp. collected from the southern waters of Taiwan, 22 new briarane derivatives, briarenolides J–Y (1126) and ZI–ZVI (2732), were obtained, and their structures determined based on analysis of their spectroscopic data (Figure 3) [16,17,18,19,20]. Briarenolide J (11) was the first 12-chlorinated diterpenoid to be isolated from Briareum sp. [16]. The relationships between the 1H and 13C NMR chemical shifts of 2-hydroxybriaranes possessing a Δ3,5(16)-conjugated diene moiety or a Δ3,5-conjugated moiety have been summarized [18]. Briarane 11 has been shown to inhibit superoxide anion generation and elastase release, with IC50 values of 15.0 and 10.0 μM, respectively [16]. In macrophage cells, briaranes 1214, 17, 2024, 26, 28 and 32 were found to reduce the level of iNOS to 23.7%, 31.7%, 49.6%, 58.4%, 57.4%, 53.5%, 41.9%, 47.3%, 50.1%, 54.3%, 47.2% and 55.7%, respectively, at a concentration of 10 μM [17,18,19,20]. Briaranes 15, 17, 2124, and 26 were found to reduce the level of COX-2 to 53.9%, 59.1%, 59.3%, 26.1%, 35.6%, 58.1% and 55.4%, respectively, at a concentration of 10 μM [18,19].

3. Gorgonacea

3.1. Dichotella gemmacea (Family Ellisellidae)

In 2014, Zhang et al. reported the isolation of seven new briarane derivatives, which were named gemmacolides AS–AY (33–39) (Figure 4), along with 10 known analogues, gemmacolides L [21], X (=dichotellide T) [22,23], AH, AJ, AO, AQ [24], junceellolides C and D [25], junceellin (=junceellin A) [25,26,27,28,29,30,31,32], and frajunolide K [33], from the South China Sea gorgonian coral, D. gemmacea [34]. Structural determination of new briaranes 33–39 was conducted using spectroscopic methods, and their absolute configurations were established based on the results of electronic circular dichroism (ECD) experiments [34]. Briarane 37 was found to exert a cytotoxic effect towards MG-63 (human osteosarcoma) cells, with an IC50 value of 7.2 μM [34].
A new briarane, dichotellide V (40) (Figure 5), along with four known briarane analogues, gemmacolide N [35], dichotellide J [23], junceellin A (=junceellin) [25,26,27,28,29,30,31,32], and junceellolide A [25], were isolated from Dichotella gemmacea, collected from Meishan Island, Hainan Province, China [36]. The structure of new briarane 40 was determined by spectroscopic methods, and none of the above compounds exhibited a cytotoxic effect on A549 (human epithelial lung carcinoma), BGC823 (human gastric cancer), H1975 (human non-small cell lung cancer), HeLa (human cervix adenocarcinoma), MCF7 (human mammary gland adenocarcinoma), or U-937 (human histiocytic lymphoma) tumor cells [36].
Eight known briaranes, junceellolide D [25], (+)-11β,20β-epoxyjunceellolide D, (−)-11β,20β- epoxy-4-deacetoxyjunceellolide D [30,37], junceol A [38], juncins H and K [39,40], praelolide [25,29,30,31,32,41,42], and junceellin (=junceellin A) [25,26,27,28,29,30,31,32], were obtained from D. gemmacea, collected from Meishan Island, Hainan Province, China in April 2009 [43]. Junceellolide D and praelolide showed antifouling activity against the settlement of larvae of barnacle Balanus amphitrite with EC50 values of 14.5 and 16.7 μM, respectively. Junceellolide D, (−)-11β,20β-epoxy-4-deacetoxyjunceellolide D, juncin H, and praelolide exhibited lethality towards brine shrimp Artemia salina with lethal ratios of 90%, 85%, 60% and 75% at a concentration of 50 μg/mL [43].
In addition, seven new briaranes, gemmacolides AZ–BF (4147) (Figure 6), and eight known analogues, dichotellides M and O [23], gemmacolide C [44], juncins P [45] and ZI [46], junceellolides D [25] and K [37], and (−)-4-deacetyljunceellolide D [30], were obtained from D. gemmacea, collected from the South China Sea [47]. The structures of new briaranes 41–47 were determined by spectroscopic methods. Briaranes 4144, 46, 47, and dichotellide O, showed cytotoxicity towards A549 cells, with IC50 values of 28.3, 24.7, 34.1, 26.8, 25.8, 13.7 and 25.5 μM, respectively. Briaranes 42, 44, 46, 47, and dichotellide O, showed cytotoxicity towards MG-63 cells, with IC50 values of 15.8, 11.4, 30.6, 34.8 and 36.8 μM, respectively. Briarane 44 and dichotellide O exhibited antibacterial activity against the Gram-negative bacterium Escherichia coli, while dichotellide O demonstrated actitity against the Gram-positive bacterium Bacillus megaterium [47].

3.2. Ellisella dollfusi (Family Ellisellidae)

Zhou and coworkers isolated seven briaranes, including two new compounds, dollfusilins A (48) and B (49) (Figure 7), along with five known analogues, brianthein W [14,48,49], funicolide E [49], 9-deacetylbriareolide H [14,50,51], 9-deacetylstylatulide lactone [14], and umbraculolide A [29,52], from the organic extract of gorgonian coral Ellisella dollfusi, collected from the Xisha Sea area of the South China Sea [53]. The structures of new briaranes 48 and 49 were determined through comprehensive analysis of spectroscopic data. Brianthein W exhibited an effect of delayed hatching and notochord growth malformation toxicity towards zebrafish Danio rerio embryos with IC50 values of 30.6 and 18.9 μg/mL in 48 h, respectively. Funicolide E displayed egg coagulation and delayed hatching toxicity towards zebrafish embryos, with EC50 values of 33.6 μg/mL (24 h) and 29.8 μg/mL, respectively [53].

3.3. Junceella fragilis (Family Ellisellidae)

Gorgonian corals belonging to the genus Junceella have also been found to be major sources of briarane-related natural diterpenoids [54,55]. The gorgonian J. fragilis, collected from the South China Sea, was found to contain 12 new briaranes, fragilisinins A–L (5061) [56] (Figure 8), along with seven known analogues, (+)-junceellolide A [30], junceellolide B [25], junceol A [38], junceellonoid D [57,58], fragilide C [59], and frajunolides A [60] and E [33]. The structures of new briaranes 5061 were determined by spectroscopic methods. Briaranes 5861 were the first iodine-containing briarane derivatives to be isolated. The absolute configuration of briarane 50 was confirmed by single-crystal X-ray diffraction data [56]. Briaranes 54, 55, 59, (+)-junceellolide A, and junceellonoid D showed potent antifouling activities against the settlement of barnacle Balanus amphitrite larvae, with EC50 values of 14.0, 12.6, 11.9, 5.6, and 10.0 μM (LC50/EC50 = >13, >14.5, >11.5, >33.3, >20), respectively [56].

3.4. Junceella gemmacea (Family Ellisellidae)

Four new briaranes, junceellolides M–P (6265) (Figure 9) [61], along with seven known briaranes, junceellolides A–D [25], junceellin A [25,26,27,28,29,30,31,32], praelolide [25,29,30,31,32,41,42], and juncin ZI [46], were isolated from the gorgonian J. gemmacea, collected from the South China Sea [61]. The structures, including the absolute configurations, of new briaranes 6265, were deduced on the basis of spectroscopic analyses, particularly electronic circular dichroism (ECD) experiments, and from biogenetic correlations among briaranes 6265.

3.5. Junceella sp. (Family Ellisellidae)

Three known briaranes, junceellin (=junceellin A) [25,26,27,28,29,30,31,32], praelolide [25,29,30,31,32,41,42], and junceellolide A [25], were claimed to have been obtained from a gorgonian coral Junceella sp., collected off the Vietnam Thu Island in May 2010 [62]. In the antimicrobial activity test, junceellin and praelolide exhibited weak antibacterial activity against the bacterium Vibrio parahaemolyticus. Junceellolide A was also found to display weak antibacterial activity against the bacterium Candida albicans [62].

4. Pennatulacea

Pennatula aculeata (Family Pennatulidae)

Investigation of the chemical constituents of P. aculeata, collected from Dinawan Island in Sabah, Malaysia, afforded novel briarane 2-acetoxyverecynarmin C (66) [63] (Figure 10). The structure of the new briarane 66 was elucidated by analysis of spectroscopic data, and this compound showed moderate inhibitory activity towards COX-1 and COX-2, with IC50 values of 44.3 and 47.3 μM, respectively. The 2-acetoxy group in 66 was found to be located on the α-face, relative to Me-15 and H-10, which is a rare occurrence in briarane-related analogues.

5. Conclusions

Since briarein A, the first briarane-type natural product, was prepared from the Caribbean octocoral Briareum asbestinum in 1977 [9], over 600 briarane-type diterpenoids have been isolated from a wide variety of marine life to date. A large portion of these natural compounds has been prepared from soft corals belonging to the orders Alcyonacea and Gorgonacea. Compounds of this type of diterpenoid have been demonstrated to possess various bioactivities in vitro, such as anti-inflammatory activity, antibacterial activity, and cytotoxicity towards cancer cells. For example, one of the compounds of this type, excavatolide B [13], has been proven to possess extensive biomedical bioactivities, such as anti-inflammatory, analgesic, the attenuation of rheumatoid arthritis activities, anticancer, and the modulation of the electrophysiological characteristics and calcium homeostasis in atrial myocytes [64,65,66,67]. Due to the structural diversity and biomedical bioactivities, there has been little synthetic work on briarane analogues [68,69]. It is interesting to note that all briaranes reported as having been isolated between 2014 and 2016 were all collected from octocorals distributed in the Indo-Pacific Ocean, particularly from the South China Sea.

Acknowledgments

This research was supported by grants from the National Museum of Marine Biology and Aquarium; the National Dong Hwa University; the National Sun Yat-sen University; and the National Research Program for Biopharmaceuticals, Ministry of Science and Technology (Grant Nos. MOST 105-2325-B-291-001, 105-2811-B-291-003, 104-2320-B-291-001-MY3, and 104-2325-B-291-001), Taiwan, awarded to Jyh-Horng Sheu, Yang-Chang Wu, and Ping-Jyun Sung.

Author Contributions

Yin-Di Su contributed in terms of writing the manuscript. Jyh-Horng Sheu, Yang-Chang Wu, and Ping-Jyun Sung conceived and designed the format of the manuscript. All of the authors contributed in terms of critical reading and discussion of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Sung, P.-J.; Sheu, J.-H.; Xu, J.-P. Survey of briarane-type diterpenoids of marine origin. Heterocycles 2002, 57, 535–579. [Google Scholar] [CrossRef]
  2. Sung, P.-J.; Chang, P.-C.; Fang, L.-S.; Sheu, J.-H.; Chen, W.-C.; Chen, Y.-P.; Lin, M.-R. Survey of briarane-related diterpenoids-part II. Heterocycles 2005, 65, 195–204. [Google Scholar] [CrossRef]
  3. Sung, P.-J.; Sheu, J.-H.; Wang, W.-H.; Fang, L.-S.; Chung, H.-M.; Pai, C.-H.; Su, Y.-D.; Tsai, W.-T.; Chen, B.-Y.; Lin, M.-R.; et al. Survey of briarane-type diterpenoids–part III. Heterocycles 2008, 75, 2627–2648. [Google Scholar] [CrossRef]
  4. Sung, P.-J.; Su, J.-H.; Wang, W.-H.; Sheu, J.-H.; Fang, L.-S.; Wu, Y.-C.; Chen, Y.-H.; Chung, H.-M.; Su, Y.-D.; Chang, Y.-C. Survey of briarane-type diterpenoids–part IV. Heterocycles 2011, 83, 1241–1258. [Google Scholar] [CrossRef]
  5. Sheu, J.-H.; Chen, Y.-H.; Chen, Y.-H.; Su, Y.-D.; Chang, Y.-C.; Su, J.-H.; Weng, C.-F.; Lee, C.-H.; Fang, L.-S.; Wang, W.-H.; et al. Briarane diterpenoids isolated from gorgonian corals between 2011 and 2013. Mar. Drugs 2014, 12, 2164–2181. [Google Scholar] [CrossRef] [PubMed]
  6. Samimi-Namin, K.; van Ofwegen, L.P. Overview of the genus Briareum (Cnidaria, Octocorallia, Briareidae) in the Indo-Pacific, with the description of a new species. ZooKeys 2016, 557, 1–44. [Google Scholar] [CrossRef] [PubMed]
  7. Bowden, B.F.; Coll, J.C.; Vasilescu, I.M. Studies of Australian soft corals. XLVI. New diterpenes from a Briareum species (Anthozoa, Octocorallia, Gorgonacea). Aust. J. Chem. 1989, 42, 1705–1726. [Google Scholar] [CrossRef]
  8. Schmitz, F.J.; Schulz, M.M.; Siripitayananon, J.; Hossain, M.B.; van der Helm, D. New diterpenes from the gorgonian Solenopodium excavatum. J. Nat. Prod. 1993, 56, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
  9. Burks, J.E.; van der Helm, D.; Chang, C.Y.; Ciereszko, L.S. The crystal and molecular structure of briarein A, a diterpenoid from the gorgonian Briareum asbestinum. Acta Cryst. 1977, B33, 704–709. [Google Scholar] [CrossRef]
  10. Groweiss, A.; Look, S.A.; Fenical, W. Solenolides, new antiinflammatory and antiviral diterpenoids from a marine octocoral of the genus Solenopodium. J. Org. Chem. 1988, 53, 2401–2406. [Google Scholar] [CrossRef]
  11. Cheng, J.-F.; Yamamura, S.; Terada, Y. Stereochemistry of the brianolide acetate (solenolide D) by the molecular mechanics calculations. Tetrahedron Lett. 1992, 33, 101–104. [Google Scholar] [CrossRef]
  12. Sheu, J.-H.; Sung, P.-J.; Su, J.-H.; Liu, H.-Y.; Duh, C.-Y.; Chiang, M.Y. Briaexcavatolides A–J, new diterpenes from the gorgonian Briareum excavatum. Tetrahedron 1999, 55, 14555–14564. [Google Scholar] [CrossRef]
  13. Sheu, J.-H.; Sung, P.-J.; Cheng, M.-C.; Liu, H.-Y.; Fang, L.-S.; Duh, C.-Y.; Chiang, M.Y. Novel cytotoxic diterpenes, excavatolides A–E, isolated from the Formosan gorgonian Briareum excavatum. J. Nat. Prod. 1998, 61, 602–608. [Google Scholar] [CrossRef] [PubMed]
  14. Sheu, J.-H.; Sung, P.-J.; Huang, L.-H.; Lee, S.-F.; Wu, T.; Chang, B.-Y.; Duh, C.-Y.; Fang, L.-S.; Soong, K.; Lee, T.-J. New cytotoxic briaran diterpenes from the Formosan gorgonian Briareum sp. J. Nat. Prod. 1996, 59, 935–938. [Google Scholar] [CrossRef] [PubMed]
  15. Liaw, C.-C.; Cheng, Y.-B.; Lin, Y.-S.; Kuo, Y.-H.; Hwang, T.-L.; Shen, Y.-C. New briarane diterpenoids from Taiwanese soft coral Briareum violacea. Mar. Drugs 2014, 12, 4677–4692. [Google Scholar] [CrossRef] [PubMed]
  16. Su, Y.-D.; Cheng, C.-H.; Chen, W.-F.; Chang, Y.-C.; Chen, Y.-H.; Hwang, T.-L.; Wen, Z.-H.; Wang, W.-H.; Fang, L.-S.; Chen, J.-J.; et al. Briarenolide J, the first 12-chlorobriarane diterpenoid from an octocoral Briareum sp. (Briareidae). Tetrahedron Lett. 2014, 55, 6065–6067. [Google Scholar] [CrossRef]
  17. Su, Y.-D.; Su, T.-R.; Wen, Z.-H.; Hwang, T.-L.; Fang, L.-S.; Chen, J.-J.; Wu, Y.-C.; Sheu, J.-H.; Sung, P.-J. Briarenolides K and L, new anti-inflammatory briarane diterpenoids from an octocoral Briareum sp. (Briareidae). Mar. Drugs 2015, 13, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
  18. Su, Y.-D.; Wen, Z.-H.; Wu, Y.-C.; Fang, L.-S.; Chen, Y.-H.; Chang, Y.-C.; Sheu, J.-H.; Sung, P.-J. Briarenolides M–T, new briarane diterpenoids from a Formosan octocoral Briareum sp. Tetrahedron 2016, 72, 944–951. [Google Scholar] [CrossRef]
  19. Su, Y.-D.; Wu, T.-Y.; Wen, Z.-H.; Su, C.-C.; Chen, Y.-H.; Chang, Y.-C.; Wu, Y.-C.; Sheu, J.-H.; Sung, P.-J. Briarenolides U–Y, new anti-inflammatory briarane diterpenoids from an octocoral Briareum sp. (Briareidae). Mar. Drugs 2015, 13, 7138–7149. [Google Scholar] [CrossRef] [PubMed]
  20. Su, Y.-D.; Sung, C.-S.; Wen, Z.-H.; Chen, Y.-H.; Chang, Y.-C.; Chen, J.-J.; Fang, L.-S.; Wu, Y.-C.; Sheu, J.-H.; Sung, P.-J. New 9-hydroxybriarane diterpenoids from a gorgonian coral Briareum sp. (Briareidae). Int. J. Mol. Sci. 2016, 17, 79. [Google Scholar] [CrossRef] [PubMed]
  21. Li, C.; La, M.-P.; Li, L.; Li, X.-B.; Tang, H.; Liu, B.-S.; Krohn, K.; Sun, P.; Yi, Y.-H.; Zhang, W. Bioactive 11,20-epoxy-3,5(16)-diene briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. J. Nat. Prod. 2011, 74, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
  22. Li, C.; La, M.-P.; Tang, H.; Pan, W.-H.; Sun, P.; Krohn, K.; Yi, Y.-H.; Li, L.; Zhang, W. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg. Med. Chem. Lett. 2012, 22, 4368–4372. [Google Scholar] [CrossRef] [PubMed]
  23. Sun, J.-F.; Han, Z.; Zhou, X.-F.; Yang, B.; Lin, X.; Liu, J.; Peng, Y.; Yang, X.-W.; Liu, Y. Antifouling briarane type diterpenoids from South China Sea gorgonians Dichotella gemmacea. Tetrahedron 2013, 69, 871–880. [Google Scholar] [CrossRef]
  24. Li, C.; Jiang, M.; La, M.-P.; Li, T.-J.; Tang, H.; Sun, P.; Liu, B.-S.; Yi, Y.-H.; Liu, Z.; Zhang, W. Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6)E-diene briaranes from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 2013, 11, 1565–1582. [Google Scholar] [CrossRef] [PubMed]
  25. Shin, J.; Park, M.; Fenical, W. The junceellolides, new anti-inflammatory diterpenoids of the briarane class from the Chinese gorgonian Junceella fragilis. Tetrahedron 1989, 45, 1633–1638. [Google Scholar] [CrossRef]
  26. Lin, Y.; Long, K. Studies of the chemical constituents of the Chinese gorgonia (IV)-Junceellin, a new chlorine-containing diterpenoid from Junceella squamata. Zhongshan Daxue Xuebao Ziran Kexueban 1983, 22, 46–51. [Google Scholar]
  27. Yao, J.; Qian, J.; Fan, H.; Shin, K.; Huang, S.; Lin, Y.; Long, K. The structure of crystal and molecule of junceellin. Zhongshan Daxue Xuebao Ziran Kexueban 1984, 1, 83–87. [Google Scholar]
  28. Lin, Y.; Jin, T.; Long, K.; Wu, Z. The hydrolytic products of junceellin A from Junceella squamata and their activities to inhibit the lung cancer A-549 cells. Zhongguo Haiyang Yaowu 1995, 14, 1–4. [Google Scholar]
  29. Subrahmanyam, C.; Kulatheeswaran, R.; Ward, R.S. Briarane diterpenes from the Indian Ocean gorgonian Gorgonella umbraculum. J. Nat. Prod. 1998, 61, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
  30. García, M.; Rodríguez, J.; Jiménez, C. Absolute structures of new briarane diterpenoids from Junceella fragilis. J. Nat. Prod. 1999, 62, 257–260. [Google Scholar] [CrossRef] [PubMed]
  31. Sung, P.-J.; Fan, T.-Y.; Fang, L.-S.; Wu, S.-L.; Li, J.-J.; Chen, M.-C.; Cheng, Y.-M.; Wang, G.-H. Briarane derivatives from the gorgonian coral Junceella fragilis. Chem. Pharm. Bull. 2003, 51, 1429–1431. [Google Scholar] [CrossRef] [PubMed]
  32. Sung, P.-J.; Fan, T.-Y.; Chen, M.-C.; Fang, L.-S.; Lin, M.-R.; Chang, P.-C. Junceellin and praelolide, two briaranes from the gorgonian corals Junceella fragilis and Junceella juncea (Ellisellidae). Biochem. Syst. Ecol. 2004, 32, 111–113. [Google Scholar] [CrossRef]
  33. Liaw, C.-C.; Shen, Y.-C.; Lin, Y.-S.; Hwang, T.-L.; Kuo, Y.-H.; Khalil, A.T. Frajunolides E–K, briarane diterpenes from Junceella fragilis. J. Nat. Prod. 2008, 71, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
  34. La, M.-P.; Li, J.; Li, C.; Tang, H.; Liu, B.-S.; Sun, P.; Zhuang, C.-L.; Li, T.-J.; Zhang, W. Briarane diterpenoids from the gorgonian Dichotella gemmacea. Mar. Drugs 2014, 12, 6178–6189. [Google Scholar] [CrossRef] [PubMed]
  35. Li, C.; La, M.-P.; Sun, P.; Kurtan, T.; Mandi, A.; Tang, H.; Liu, B.-S.; Yi, Y.-H.; Li, L.; Zhang, W. Bioactive (3Z,5E)-11,20-epoxybriara-3,5-dien-7,18-olide diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 2011, 9, 1403–1418. [Google Scholar] [CrossRef] [PubMed]
  36. Sun, J.-F.; Yang, B.; Zhou, X.-F.; Yang, X.-W.; Wang, L.; Liu, Y. A new briarane-type diterpenoid from the South China Sea gorgonian Dichotella gemmacea. Nat. Prod. Res. 2015, 29, 807–812. [Google Scholar] [CrossRef] [PubMed]
  37. Sheu, J.-H.; Chen, Y.-P.; Hwang, T.-L.; Chiang, M.Y.; Fang, L.-S.; Sung, P.-J. Junceellolides J–L, 11,20-epoxybriaranes from the gorgonian coral Junceella fragilis. J. Nat. Prod. 2006, 69, 269–273. [Google Scholar] [CrossRef] [PubMed]
  38. Sung, P.-J.; Pai, C.-H.; Su, Y.-D.; Hwang, T.-L.; Kuo, F.-W.; Fan, T.-Y.; Li, J.-J. New 8-hydroxybriarane diterpenoids from the gorgonians Junceella juncea and Junceella fragilis (Ellisellidae). Tetrahedron 2008, 64, 4224–4232. [Google Scholar] [CrossRef]
  39. Anjaneyulu, A.S.R.; Rao, N.S.K. Juncins G and H: New briarane diterpenoids of the Indian Ocean gorgonian Junceella juncea Pallas. J. Chem. Soc. Perkin Trans. 1 1997, 6, 959–962. [Google Scholar] [CrossRef]
  40. Anjaneyulu, A.S.R.; Rao, V.L.; Sastry, V.G.; Venugopal, M.J.R.V.; Schmitz, F.J. Juncins I–M, five new briarane diterpenoids from the Indian Ocean gorgonian Junceella juncea Pallas. J. Nat. Prod. 2003, 66, 507–510. [Google Scholar] [CrossRef] [PubMed]
  41. Luo, Y.; Long, K.; Fang, Z. Studies of the chemical constituents of the Chinese gorgonia (III)-Isolation and identification of a new polyacetoxy chlorine-containing diterpene lactone (praelolide). Zhongshan Daxue Xuebao Ziran Kexueban 1983, 1, 83–92. [Google Scholar]
  42. Dai, J.; Wan, Z.; Rao, Z.; Liang, D.; Fang, Z.; Luo, Y.; Long, K. Molecular structure and absolute configuration of the diterpene lactone, praelolide. Sci. Sin. Ser. B 1985, 28, 1132–1142. [Google Scholar]
  43. Zhang, M.-Q.; Zhao, J.; Liu, H.-Y.; Cao, F.; Wang, C.-Y. Briarane diterpenoids from gorgonian Dichotella gemmacea collected from the South China Sea. Chem. Nat. Comp. 2016, 52, 945–947. [Google Scholar] [CrossRef]
  44. He, H.-Y.; Faulkner, D.J. New chlorinated diterpenes from the gorgonian Junceella gemmacea. Tetrahedron 1991, 47, 3271–3280. [Google Scholar] [CrossRef]
  45. Qi, S.-H.; Zhang, S.; Huang, H.; Xiao, Z.-H.; Huang, J.-S.; Li, Q.-X. New briaranes from the South China Sea gorgonian Junceella juncea. J. Nat. Prod. 2004, 67, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
  46. Qi, S.-H.; Zhang, S.; Qian, P.-Y.; Xiao, Z.-H.; Li, M.-Y. Ten new antifouling briarane diterpenoids from the South China Sea gorgonian Junceella juncea. Tetrahedron 2006, 62, 9123–9130. [Google Scholar] [CrossRef]
  47. Li, C.; La, M.-P.; Tang, H.; Sun, P.; Liu, B.-S.; Zhuang, C.-L.; Yi, Y.-H.; Zhang, W. Chemistry and bioactivity of briaranes from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 2016, 14, 201. [Google Scholar] [CrossRef] [PubMed]
  48. Cardellina, J.H., II; James, T.R., Jr.; Chen, M.H.M.; Clardy, J. Structure of brianthein W, from the soft coral Briareum polyanthes. J. Org. Chem. 1984, 49, 3398–3399. [Google Scholar] [CrossRef]
  49. Guerriero, A.; D’Ambrosio, M.; Pietra, F. Bis-allylic reactivity of the funicolides, 5,8(17)-diunsaturated briarane diterpenes of the sea pen Funiculina quadrangularis from the tuscan archipelago, leading to 16-nortaxane derivatives. Helv. Chim. Acta 1995, 78, 1465–1478. [Google Scholar] [CrossRef]
  50. Bowden, B.F.; Coll, J.C.; König, G.M. Studies of Australian soft corals. XLVIII. New briaran diterpenoids from the gorgonian coral Junceella gemmacea. Aust. J. Chem. 1990, 43, 151–159. [Google Scholar] [CrossRef]
  51. Pordesimo, E.O.; Schmitz, F.J.; Ciereszko, L.S.; Hossain, M.B.; van der Helm, D. New briarein diterpenes from the Caribbean gorgonians Erythropodium caribaeorum and Briareum sp. J. Org. Chem. 1991, 56, 2344–2357. [Google Scholar] [CrossRef]
  52. Subrahmanyam, C.; Ratnakumar, S.; Ward, R.S. Umbraculolides B–D, further briarane diterpenes from the gorgonian Gorgonella umbraculum. Tetrahedron 2000, 56, 4585–4588. [Google Scholar] [CrossRef]
  53. Zhou, Y.-M.; Shao, C.-L.; Huang, H.; Zhang, X.-L.; Wang, C.-Y. New briarane-type diterpenoids from gorgonian Ellisella dollfusi from the South China Sea. Nat. Prod. Res. 2014, 28, 7–11. [Google Scholar] [CrossRef] [PubMed]
  54. Sung, P.-J.; Gwo, H.-H.; Fan, T.-Y.; Li, J.-J.; Dong, J.; Han, C.-C.; Wu, S.-L.; Fang, L.-S. Natural product chemistry of gorgonian corals of the genus Junceella. Biochem. Syst. Ecol. 2004, 32, 185–196. [Google Scholar] [CrossRef]
  55. Wu, Y.-C.; Su, J.-H.; Chou, T.-T.; Cheng, Y.-P.; Weng, C.-F.; Lee, C.-H.; Fang, L.-S.; Wang, W.-H.; Li, J.-J.; Lu, M.-C.; et al. Natural product chemistry of gorgonian corals of genus Junceella-part II. Mar. Drugs 2011, 9, 2773–2792. [Google Scholar] [CrossRef] [PubMed]
  56. Lei, H.; Sun, J.-F.; Han, Z.; Zhou, X.-F.; Yang, B.; Liu, Y. Fragilisinins A–L, new briarane-type diterpenoids from gorgonian Junceella fragilis. RSC Adv. 2014, 4, 5261–5271. [Google Scholar] [CrossRef]
  57. Qi, S.-H.; Zhang, S.; Wen, Y.-M.; Xiao, Z.-H.; Li, Q.-X. New briaranes from the South China Sea gorgonian Junceella fragilis. Helv. Chim. Acta 2005, 88, 2349–2354. [Google Scholar] [CrossRef]
  58. Sung, P.-J.; Wang, S.-H.; Chiang, M.Y.; Su, Y.-D.; Chang, Y.-C.; Hu, W.-P.; Tai, C.-Y.; Liu, C.-Y. Discovery of new chlorinated briaranes from Junceella fragilis. Bull. Chem. Soc. Jpn. 2009, 82, 1426–1432. [Google Scholar] [CrossRef]
  59. Sung, P.-J.; Lin, M.-R.; Su, Y.-D.; Chiang, M.Y.; Hu, W.-P.; Su, J.-H.; Cheng, M.-C.; Hwang, T.-L.; Sheu, J.-H. New briaranes from the octocorals Briareum excavatum (Briareidae) and Junceella fragilis (Ellisellidae). Tetrahedron 2008, 64, 2596–2604. [Google Scholar] [CrossRef]
  60. Shen, Y.-C.; Chen, Y.-H.; Hwang, T.-L.; Guh, J.-H.; Khalil, A.T. Four new briarane diterpenoids from the gorgonian coral Junceella fragilis. Helv. Chim. Acta 2007, 90, 1391–1398. [Google Scholar] [CrossRef]
  61. Zhou, W.; Li, J.; E, H.-C.; Liu, B.-S.; Tang, H.; Gerwick, W.H.; Hua, H.-M.; Zhang, W. Briarane diterpenes from the South China Sea gorgonian coral, Junceella gemmacea. Mar. Drugs 2014, 12, 589–600. [Google Scholar] [CrossRef] [PubMed]
  62. Kapustina, I.I.; Kalinovskii, A.I.; Dmitrenok, P.S.; Kuz’mich, A.S.; Nedashkovskaya, O.I.; Grebnev, B.B. Diterpenoids and other metabolites from the Vietnamese gorgonians Lophogorgia sp. and Junceella sp. Chem. Nat. Comp. 2014, 50, 1140–1142. [Google Scholar] [CrossRef]
  63. Bahl, A.; Jachak, S.M.; Palaniveloo, K.; Ramachandram, T.; Vairappan, C.S.; Chopra, H.K. 2-Acetoxy-verecynarmin C, a new briarane COX inhibitory diterpenoid from Pennatula aculeata. Nat. Prod. Commun. 2014, 9, 1139–1141. [Google Scholar] [PubMed]
  64. Lin, Y.-Y.; Lin, S.-C.; Feng, C.-W.; Chen, P.-C.; Su, Y.-D.; Li, C.-M.; Yang, S.-N.; Jean, Y.-H.; Sung, P.-J.; Duh, C.-Y.; et al. Anti-inflammatory and analgesic effects of the marine-derived compound excavatolide B isolated from the culture-type Formosan gorgonian Briareum excavatum. Mar. Drugs 2015, 13, 2559–2579. [Google Scholar] [CrossRef] [PubMed]
  65. Lin, Y.-Y.; Jean, Y.-H.; Lee, H.-P.; Lin, S.-C.; Pan, C.-Y.; Chen, W.-F.; Wu, S.-F.; Su, J.-H.; Tsui, K.-H.; Sheu, J.-H.; et al. Excavatolide B attenuates rheumatoid arthritis through the inhibition of osteoclastogenesis. Mar. Drugs 2017, 15, 9. [Google Scholar] [CrossRef] [PubMed]
  66. Hwang, H.-R.; Tai, B.-Y.; Cheng, P.-Y.; Chen, P.-N.; Sung, P.-J.; Wen, Z.-H.; Hsu, C.-H. Excavatolide B modulates the electrophysiological characteristics and calcium homeostasis of atrial myocytes. Mar. Drugs 2017, 15, 25. [Google Scholar] [CrossRef] [PubMed]
  67. Velmurugan, B.K.; Yang, H.-H.; Sung, P.-J.; Weng, C.-F. Excavatolide B inhibits nonsmall cell lung cancer proliferation by altering peroxisome proliferator activated receptor gamma expression and PTEN/AKT/NF-Kβ expression. Environ. Toxicol. 2017, 32, 290–301. [Google Scholar] [CrossRef] [PubMed]
  68. Crimmins, M.T.; Knight, J.D.; Williams, P.S.; Zhang, Y. Stereoselective synthesis of quaternary carbons via the dianionic Ireland–Claisen rearrangement. Org. Lett. 2014, 16, 2458–2461. [Google Scholar] [CrossRef] [PubMed]
  69. Moon, N.G.; Harned, A.M. A concise synthetic route to the stereotetrad core of the briarane diterpenoids. Org. Lett. 2015, 17, 2218–2221. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Possible biogenetic origin of briarane-type metabolites. The numbering system shown is that presently in use [1].
Figure 1. Possible biogenetic origin of briarane-type metabolites. The numbering system shown is that presently in use [1].
Marinedrugs 15 00044 g001
Figure 2. Structures of briaviolides A–J (110).
Figure 2. Structures of briaviolides A–J (110).
Marinedrugs 15 00044 g002
Figure 3. Structures of briarenolides J–Y (1126) and ZI–ZVI (2732).
Figure 3. Structures of briarenolides J–Y (1126) and ZI–ZVI (2732).
Marinedrugs 15 00044 g003
Figure 4. Structures of gemmacolides AS–AY (33–39).
Figure 4. Structures of gemmacolides AS–AY (33–39).
Marinedrugs 15 00044 g004
Figure 5. Structure of dichotellide V (40).
Figure 5. Structure of dichotellide V (40).
Marinedrugs 15 00044 g005
Figure 6. Gemmacolides AZ–BF (4147).
Figure 6. Gemmacolides AZ–BF (4147).
Marinedrugs 15 00044 g006
Figure 7. Structures of dollfusilins A (48) and B (49).
Figure 7. Structures of dollfusilins A (48) and B (49).
Marinedrugs 15 00044 g007
Figure 8. Structures of fragilisinins A–L (50–61).
Figure 8. Structures of fragilisinins A–L (50–61).
Marinedrugs 15 00044 g008
Figure 9. Structures of junceellolides M–P (62–65).
Figure 9. Structures of junceellolides M–P (62–65).
Marinedrugs 15 00044 g009
Figure 10. Structure of 2-acetoxyverecynarmin C (66).
Figure 10. Structure of 2-acetoxyverecynarmin C (66).
Marinedrugs 15 00044 g010

Share and Cite

MDPI and ACS Style

Su, Y.-D.; Su, J.-H.; Hwang, T.-L.; Wen, Z.-H.; Sheu, J.-H.; Wu, Y.-C.; Sung, P.-J. Briarane Diterpenoids Isolated from Octocorals between 2014 and 2016. Mar. Drugs 2017, 15, 44. https://doi.org/10.3390/md15020044

AMA Style

Su Y-D, Su J-H, Hwang T-L, Wen Z-H, Sheu J-H, Wu Y-C, Sung P-J. Briarane Diterpenoids Isolated from Octocorals between 2014 and 2016. Marine Drugs. 2017; 15(2):44. https://doi.org/10.3390/md15020044

Chicago/Turabian Style

Su, Yin-Di, Jui-Hsin Su, Tsong-Long Hwang, Zhi-Hong Wen, Jyh-Horng Sheu, Yang-Chang Wu, and Ping-Jyun Sung. 2017. "Briarane Diterpenoids Isolated from Octocorals between 2014 and 2016" Marine Drugs 15, no. 2: 44. https://doi.org/10.3390/md15020044

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop