Skip to main content
Log in

Stability of the crystal structure of α-BiFeO3

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Density-functional-theory-based calculations have been carried out to investigate the structural stability of bismuth ferrite (α-BiFeO3). α-BiFeO3 was generally observed to be in a hexagonal phase with the space group R3c. In a new experiment, however, several different crystal structures were suggested, and the triclinic phase (space group: P1) was claimed to be the most stable one. In order to confirm the claim theoretically, we carried out electronic-structure calculations for the various crystal structures suggested experimentally. Unlike the new experimental claim, we found that the hexagonal phase (R3c) had the lowest total energy. Furthermore, the hexagonal phase has a direct band gap of 0.87 eV. Even though this value is much smaller than the experimental value (1.3 eV) because of the notorious deficiency of the generalized-gradient approximation employed in this investigation, it is the closest one to the experimental one among the calculated band gaps of the investigated models. To understand the differences among different models, we investigated the band structure, density of states, and charge density. Along with the bonding process, the charge transfer was analyzed using the atoms-in-molecules theory. Based on this topological analysis of the bonding character, the evolution of the bonding strength with the critical points along the bonding trajectory and the valence charge in the atomic basins are presented quantitatively. The results show that the hexagonal phase has the strongest ionic character. Furthermore, the stability of our claimed model can be further assured by the bond ellipticity, which is a measure of the deviation of the charge distribution of a bond path from axial symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom and U. Waghmare, Science 299, 1719 (2003).

    Article  ADS  Google Scholar 

  2. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).

    Article  ADS  Google Scholar 

  3. T. Choi, S. Lee, Y. Choi, V. Kiryukhin and S. W. Cheong, Science 324, 63 (2009).

    Article  ADS  Google Scholar 

  4. B. I. Abelev, STAR Collaboration, Phys. Rev. Lett. 103, 251601 (2009).

    Article  ADS  Google Scholar 

  5. J. Lu, A. Gnther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V. Travkin, A. Mukhin and A. Loidl, Eur. Phys. J. B 75, 451 (2010).

    Article  ADS  Google Scholar 

  6. R. T. Smith, G. D. Achenbach, R. Gerson and W. J. James, J. Appl. Phys. 39, 70 (1968).

    Article  ADS  Google Scholar 

  7. C. Blaauw and F. Van der Woude, J. Phys. C: Solid 6, 1422 (1973).

    Article  ADS  Google Scholar 

  8. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).

    Article  ADS  Google Scholar 

  9. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. Cruz, Y. Chu, C. Ederer and N. Spaldin, Nature Mater. 5, 823 (2006).

    Article  ADS  Google Scholar 

  10. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee and W. Hu, Nature Mater. 7, 478 (2008).

    Article  ADS  Google Scholar 

  11. K. Terakura, T. Oguchi, A.R. Williams and J. Kbler, Phys. Rev. B 30, 4734 (1984).

    Article  ADS  Google Scholar 

  12. J. L. Li, G. M. Rignanese and S. G. Louie, Phys. Rev. B 71, 193102 (2005).

    Article  ADS  Google Scholar 

  13. D. Ricinschi, K. Y. Yun and M. Okuyama, J. Phys.: Conden. Matt. 18, L97 (2006).

    ADS  Google Scholar 

  14. I. Sosnowska, T. P. Neumaier and E. Steichele, J. Phys. C: Solid 15, 4835 (1982).

    Article  ADS  Google Scholar 

  15. Y. J. Yoo, J. S. Hwang, Y. P. Lee, J. S. Park, J. Y. Rhee, J. H. Kang, K. W. Lee, B. W. Lee and M. S. Seo, J. Magn. Magn. Mater. 374, 669 (2015).

    Article  ADS  Google Scholar 

  16. R. Haumont, I. A. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel and B. Dkhil, Phys. Rev. B 78, 134108 (2008).

    Article  ADS  Google Scholar 

  17. S. M. Selbach, T. Tybell, M. A. Einarsrud and T. Grande, Adv. Mater. 20, 3692 (2008).

    Article  Google Scholar 

  18. D. C. Arnold, K. S. Knight, F. D. Morrison and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).

    Article  ADS  Google Scholar 

  19. E. Wollan and W. Koehler, Phys. Rev. 100, 545 (1955).

    Article  ADS  Google Scholar 

  20. S. Kiselev, G. Zhdanov and R. Ozerov, Dok. Akad. Nauk USSR 145, 1255 (1962).

    Google Scholar 

  21. S. V. Kiselev, O. R. Kshnyakina and G. Zhdanov, Sov. Phys. Sol. State 5, 2425 (1964).

    Google Scholar 

  22. A. Jacobson and B. Fender, J. Phys. C: Solid. 5, 844 (1975).

    Article  ADS  Google Scholar 

  23. P. Fischer, M. Polomska, I. Sosnowskaa and M. Szymanski, J. Phys. C: Solid 13, 1931 (1980).

    Article  ADS  Google Scholar 

  24. I. Sosnowska, M. Loewenhaupt, W. David and R. Ibberson, Phys. B: Conden. Matt. 180, 117 (1992).

    Article  ADS  Google Scholar 

  25. M. Ramazanoglu, I. W. Ratcliff, Y. Choi, S. Lee, S. W. Cheong and V. Kiryukhin, Phys. Rev. B 83, 174434 (2011).

    Article  ADS  Google Scholar 

  26. I. Sosnowska and R. Przenioslo, Phys. Rev. B 84, 144404 (2011).

    Article  ADS  Google Scholar 

  27. T. Higuchi, Y. S. Liu, P. Yao, P. A. Glans, J. Guo, C. Chang, Z. Wu, W. Sakamoto, N. Itoh and T. Shimura, Phys. Rev. B 78, 085106 (2008).

    Article  ADS  Google Scholar 

  28. I. Sosnowska, R. Przenioslo, A. Palewicz, D. Wardecki and A. Fitch, J. Phys. Soc. Jpn. 81, 044604 (2012).

    Article  ADS  Google Scholar 

  29. H. Wang, C. Yang, J. Lu, M. Wu, J. Su, K. Li, J. Zhang, G. Li, T. Jin and T. Kamiyama, Inorg. Chem. 52, 2388 (2013).

    Article  Google Scholar 

  30. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, (Oxford, U.K, 1990).

    Google Scholar 

  31. R. F. Bader, J. Phys. Chem. A 102, 7314 (1998).

    Article  Google Scholar 

  32. C. Katan, P. Rabiller, C. Lecomte, M. Guezo, V. Oison and M. Souhassou, J. Appl. Cryst. 36, 65 (2003).

    Article  Google Scholar 

  33. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An augmented plane wave + local orbitals program for calculating crystal properties (WIEN2k, 2014).

    Google Scholar 

  34. J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  35. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  36. R. F. W. Bader and H. Essen, J. Chem. Phys. 80, 1943 (1984).

    Article  ADS  Google Scholar 

  37. R. F. W. Bader, MTP Intern. Ser. Sci., Theor. Chem. Butterworths II, 43 (1975).

    Google Scholar 

  38. G. Runtz, R. Bader and R. Messer, Canad. J. Chem. 55, 3040 (1977).

    Article  Google Scholar 

  39. R. F. W. Bader, S. Anderson and A. Duke, J. Am. Chem. Soc. 101, 1389 (1979).

    Article  Google Scholar 

  40. R. F. W. Bader, T. Nguyen-Dang and Y. Tal, Rep. Prog. Phys. 44, 893 (1981).

    Article  ADS  Google Scholar 

  41. R. F. W. Bader, Chem. Rev. 91, 893 (1991).

    Article  Google Scholar 

  42. R. F. W. Bader, Acc. Chem. Res. 18, 9 (1985).

    Article  Google Scholar 

  43. G. Madsen, C. Gatti, B. Iversen, L. Damjanovic, G. Stucky and V. Srdanov, Phys. Rev. B 59, 12359 (1999).

    Article  ADS  Google Scholar 

  44. R. F. W. Bader, T. Slee, D. Cremer and E. Kraka, J. Am. Chem. Soc. 105, 5061 (1983).

    Article  Google Scholar 

  45. P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus and H. Fjellvg, Phys. Rev. Lett. 89, 106403 (2002).

    Article  ADS  Google Scholar 

  46. L. Orgel, J. Chem. Soc. 769, 3815 (1959).

    Article  Google Scholar 

  47. P. Mohn, C. Persson, P. Blaha, K. Schwarz et al., Phys. Rev. Lett. 87, 196401 (2001).

    Article  ADS  Google Scholar 

  48. J. Y. Rhee, J. Appl. Phys. 96, 7018 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2058975).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Yull Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Naz, I., Jang, J.K. et al. Stability of the crystal structure of α-BiFeO3 . Journal of the Korean Physical Society 70, 394–400 (2017). https://doi.org/10.3938/jkps.70.394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.394

Keywords

Navigation