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Abstract. Quantitative knowledge of effective soil hydraulic material properties is essential to predict soil water movement.

ground-penetrating radar (GPR) is a non-invasive and non-destructive geophysical measurement method to monitor the hy-

draulic processes precisely. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive

to the soil water characteristic and the hydraulic conductivity function. In this work, we show that this signal is suitable to

accurately estimate the subsurface architecture and the associated effective soil hydraulic material properties with inversion5

methods. Therefore, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water con-

tent to relative permittivity with the complex reflective index model (CRIM), and solve Maxwell’s equations numerically. In

order to analyze the GPR signal, we implemented a new heuristic event detection and association algorithm. Using events

instead of the full wave regularizes the inversion as it allows to focus on the relevant measurement signal. Starting from an

ensemble of Latin hypercube drawn initial parameter sets, we sequentially couple the simulated annealing algorithm with the10

Levenberg–Marquardt algorithm. We apply the method to synthetic as well as measured data from the ASSESS test site and

show that the method yields accurate estimates for the soil hydraulic material properties as well as for the subsurface architec-

ture by comparing the results to references derived from time domain reflectometry (TDR) and subsurface architecture ground

truth data.

1 Introduction15

Quantitative understanding of soil water movement is in particular based on accurate knowledge of the subsurface architecture

and the hydraulic material properties. As direct measurements are time-consuming and near to impossible at larger scales, soil

hydraulic material properties are typically determined with indirect identification methods, such as inversion (Hopmans et al.,

2002; Vrugt et al., 2008). Time domain reflectometry (TDR, e.g., Robinson et al., 2003) is a standard method to acquire the

required measurement data because it monitors the hydraulic processes accurately. Yet, being an invasive method, the TDR20

sensors disturb the soil texture of interest and typically require the maintenance of a local measurement station. Hence, it is

difficult to apply the method at larger scales or to transfer the sensors to another field site. Ground-penetrating radar (GPR,

e.g., Daniels, 2004; Neal, 2004) is an established non-invasive method for subsurface characterization and has the potential to
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become a standard method for efficient, accurate and precise determination soil hydraulic material properties.

Available research studies regarding the estimation of hydraulic properties from GPR measurements may be categorized ac-

cording to the applied methods for the different components of the research study, such as (i) GPR measurement procedure,

(ii) experiment type, (iii) GPR simulation method, (iv) optimization method, and (v) evaluation method of the GPR signal.

Most of these studies either use on-ground, off-ground, or borehole GPR measurements. On-ground measurements (e.g., Buch-5

ner et al., 2012; Busch et al., 2012; Léger et al., 2015) are the easiest and the most flexible approach. They have the disad-

vantage, however, that the antenna characteristics is influenced by the coupling to the ground. Off-ground measurements (e.g.,

Lambot et al., 2009; Jadoon et al., 2012; Jonard et al., 2015) avoid these effects, but the measurements are influenced by sur-

face roughness. Cross-borehole measurements allow for high resolution tomography of the subsurface (e.g., Ernst et al., 2007;

Looms et al., 2008; Scholer et al., 2011), but require boreholes which are destructive and expensive.10

The applied experiment types range from infiltration, fluctuating groundwater table, to evaporation. Infiltration experiments

(e.g., Léger et al., 2014; Thoma et al., 2014; Rossi et al., 2015) are fast (hours) and provide information about the near sur-

face material properties. Through its dependence on the form of the infiltration front or plume, the resulting GPR signal can

get rather complicated for quantitative evaluation. Difficulties arise from multiple reflections in the plume, waveguides in the

infiltration front, and from noise originating in small-scale heterogeneity or fingering). If the infiltration is done artificially,15

accurate knowledge of the spatial distribution of the infiltration flux is required. Also simultaneous GPR measurements during

the infiltration process are difficult as the antenna coupling to the subsurface is influenced by the changing water content close

to the surface. Fluctuating groundwater table experiments (e.g., Bradford et al., 2014; Léger et al., 2015) require intermediate

time scales (hours to days) and provide information about the material properties close to the groundwater table. These exper-

iments are typically limited to fluvial or coastal areas or are induced artificially in test sites. Evaporation experiments (e.g.,20

Moghadas et al., 2014) demand long time scales (weeks) as the hydraulic dynamics is slow at low water contents. Yet, this

kind of experiment is important to understand the coupling of the pedosphere with the atmosphere quantitatively.

The applied models to simulate the GPR signal balance performance and accuracy. Ray tracing (Léger et al., 2014, 2015)

is fast but merely yields an approximate solution of Maxwell’s equations. These equations can be solved analytically with a

Green’s function (e.g., Lambot et al., 2009; Busch et al., 2012; Jonard et al., 2015) assuming a layered subsurface architecture.25

Alternatively, Maxwell’s equations can be solved numerically with the finite differences time domain (FDTD) method (e.g.,

Buchner et al., 2012). This method is computationally expensive, but grants full flexibility concerning the source wavelet and

the subsurface architecture.

Due to the inherent oscillating nature of the electromagnetic signal, inversion of GPR data generally demands globally con-

vergent and robust optimization techniques. Sequentially coupling a globally convergent search algorithm (e.g., the global30

multilevel coordinate search algorithm (GMCS, Huyer and Neumaier, 1999) with the gradient-free locally convergent Nelder–

Mead simplex algorithm (NMS, Nelder and Mead, 1965) was successfully applied to estimate hydraulic material properties

from GPR measurements (e.g., Lambot et al., 2004; Busch et al., 2012; Moghadas et al., 2014). The NMS was further devel-

oped to the shuffled complex evolution (SCE-UA, Duan et al., 1992) which has become a standard tool in hydrology and was

also applied on GPR measurements (e.g., Léger et al., 2014, 2015; Jadoon et al., 2012). Additionally, Markov chain Monte35
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Carlo (MCMC) methods (e.g., Scholer et al., 2011; Thoma et al., 2014; Jonard et al., 2015) and data assimilation approaches

(e.g., Tran et al., 2014; Manoli et al., 2015; Rossi et al., 2015) have been successfully applied so far.

The GPR signal has to be processed automatically for parameter estimation. Many full waveform inversion approaches directly

use the resulting Green’s function (e.g., Lambot et al., 2009; Busch et al., 2012; Jadoon et al., 2012) in the cost function. Using

the full antenna signal may lead to many local minima prohibiting a reliable identification of the global minimum (e.g., Brad-5

ford et al., 2014). In contrast, filtering the radargram with convolution approaches to determine travel time and amplitude of a

limited number of events may even allow the application of efficient locally-convergent algorithms (e.g., Buchner et al., 2012).

In homogeneous material, the transition zone above the groundwater table exhibits a smooth variation of the relative permit-

tivity. As the resulting GPR reflection is a superposition of a series of infinitesimal contributions along the transition zone, the

detailed form of this reflection is sensitive to the variation of the relative permittivity. For simplicity, we refer to this reflection10

as transition zone reflection. Dagenbach et al. (2013) showed that this reflection is sensitive to the hydraulic material parame-

terization model. Bradford et al. (2014) measured the transition zone reflection of a drainage pumping test in a fluvial area with

a antenna center frequency of 200 MHz and estimated hydraulic material properties. Klenk et al. (2015) employed numerical

forward simulations and experiments using GPR antennas with higher antenna center frequency (400 and 600 MHz) for a more

detailed explanation of the transition zone reflection during imbibition, relaxation, and drainage. They also concluded that the15

transition zone reflection is sensitive on hydraulic material properties.

In this work, we use the transition zone reflection together with reflections at material interfaces to determine the subsurface

architecture and the corresponding hydraulic material properties. Therefore, the ASSESS test site was forced with a fluctuating

groundwater table ensuring large hydraulic dynamics. The time-lapse measurement data was acquired with a single channel

on-ground bistatic antenna operating at a center frequency of 400 MHz. Similar to Buchner et al. (2012), we solve Maxwell’s20

equations in 2D and employ a new semi-automatic heuristic approach to extract travel time and amplitude of relevant reflec-

tions. This allows the optimization procedure to focus on the relevant information in the radargram and decreases the number

of local minima. We draw an ensemble of initial parameter sets with the Latin hypercube algorithm. These parameter sets

serve as initial parameters for the simulated annealing algorithm which is sequentially coupled with the Levenberg–Marquardt

algorithm. We show that this procedure allows to accurately estimate the subsurface architecture and the associated effective25

hydraulic material properties for synthetic and measurement data.

2 Methods

Parts of this section were already presented in Jaumann and Roth (2017) but are repeated here for the convenience of the reader.

2.1 ASSESS

The ASSESS test site is located near Heidelberg, Germany, and consists of three different kinds of sand (materials A, B, and30

C). Its effective 2D subsurface architecture is visualized in Fig. 1. The approximately 2 m× 20 m× 4 m large site is equipped

with a well to monitor and manipulate the groundwater table, a weatherstation, a tensiometer (UMS T4-191), as well as 32 soil
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Figure 1. ASSESS emulates an effective 2D geometry with three distinct kinds of sand (A, B, and C). The hydraulic state can be manipulated

with a groundwater well (white square at 18.3 m) and is monitored with three GPR antennas (1, 2, and 3), a tensiometer (black square, at

4.0 m), and 32 TDR sensors (black dots). The gravel layer at the bottom ensures a rapid water pressure distribution over the site. An L element

(left wall, at 0.4 m) and compaction interfaces (white lines) were introduced during the construction. Additionally to those visualized, GPR

evidence indicates additional compaction interfaces (Fig. 13). Roman numbers (I)–(VII) indicate material interfaces referred to in the text.

Note the different scales on the horizontal and vertical axes.

temperature and TDR sensors. A geotextile separates the sand from an approximately 0.1 m thick gravel layer below, which

ensures a rapid water pressure distribution and is the only connection of the groundwater well to the rest of the test site. Below

this gravel layer, a basement layer partially consisting of reinforced concrete confines the site. As the test site is built into a

former fodder silo, a concrete L element serves as additional wall. In order to stabilize the material during the construction, it

was compacted. In addition to those shown in Fig. 1, GPR measurements indicate even more compaction interfaces (Fig. 13).5

2.2 Representation

We follow Bauser et al. (2016) and define the representation of a system as a set consisting of: dynamics (mathematical

description), subscale physics (material properties), forcing (superscale physics), and states.

2.2.1 Dynamics

The Richards equation (Richards, 1931),10

∂tθ−∇ · [Kw(θ)[∇hm(θ)− ez]] = 0, (1)

is the standard model to describe the propagation of the volumetric water content θ (−) and the matric head hm (m) in space

and time t (s). The solution of this partial differential equation requires the specification of material properties, namely the soil

water characteristic θ(hm) and the hydraulic conductivity function Kw(θ), which are (i) highly non–linear, (ii) varying over

many orders of magnitude, (iii) showing hysteretic behavior, (iv) impossible to determine a priori, and (v) very expensive to15

measure directly. The unit vector in z-direction ez indicates the direction of gravity, typically pointing downwards.
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Figure 2. During the experiment with three distinct phases (initial drainage, multistep imbibition, and multistep drainage – separated by

vertical lines), the position of the groundwater table was measured manually in the groundwater well and automatically with the tensiometer

(Fig. 1). Notice that the difference between them is proportional to the driving force of water flow in the gravel layer.

2.2.2 Subscale physics

We choose the Brooks–Corey parameterization (Brooks and Corey, 1966) for the soil water characteristic θ(hm), because it

describes the materials in ASSESS appropriately (Dagenbach et al., 2013). Neglecting hysteresis, this parameterization may

be inverted for θr ≤ θ ≤ θs, leading to5

hm(θ) = h0

(
θ− θr

θs− θr

)−1/λ

(2)

including parameters representing a saturated water content θs (−), a residual water content θr (−), a scaling parameter h0 (m)

related to the air entry pressure (h0 < 0 m) and a shape parameter λ (−) related to the pore size distribution (λ > 0).

Inserting the Brooks–Corey parameterization into the hydraulic conductivity model of Mualem (1976) yields the parameteri-

zation10

Kw(θ) =K0

(
θ− θr

θs− θr

)τ+2+2/λ

(3)

for the hydraulic conductivity function where K0 (m s−1) is the saturated hydraulic conductivity and τ (−) a fudge factor.

2.2.3 Forcing

The ASSESS site was forced with a fluctuating groundwater table leading to three characteristic phases (Fig. 2): (i) initial

drainage phase, (ii) multistep imbibition phase, and (iii) multistep drainage phase. We neglect evaporation in the following,15

because the experiment took place at the end of November and the weather was cloudy with 2–7 ◦C air temperature. The

last precipitation was measured approximately 10 days before the experiment. More details about the experiment are given in

Jaumann and Roth (2017). In this work, we only focus on the initial drainage and multistep imbibition phase.

5

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-538
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 13 September 2017
c© Author(s) 2017. CC BY 4.0 License.



2.2.4 State

The hydraulic state was monitored with GPR as well as with measurements of the position of the groundwater table in the

groundwater well and at the position of the tensiometer. We used three shielded bistatic single channel 400 MHz GPR antenna

pairs (Ingegneria dei Sistemi S.p.A., Italy). These antennas are referred to as antenna 1, 2, and 3, respectively. The measurement

resolution was set to 2048 samples for 60 ns. In order to analyze the initial state of the test site, a multi-channel common offset5

measurement was acquired with antennas 1 and 2. The internal separation of the transmitter and receiver of these antennas

is 0.14 m. During the experiment, the antennas were used to measure three time-lapse radargrams. In this work, we focus on

the quantitative evaluation of the time-lapse data from GPR antenna 3 (Fig. 1). These data are analyzed in detail in Sect. 3.3.

Additionally, a mean soil temperature (Ts = 8.5 ◦C) and a mean direct current conductivity (σdc = 0.003 S m−1) was estimated

from TDR related measurements available in ASSESS.10

The observation operator required to compare the hydraulic state with the GPR measurement data involves the solution of the

time-dependent Maxwell’s equations in linear macroscopic isotropic media. These equations quantify the propagation of the

electromagnetic field consisting of the electric field E and the magnetic field B (Jackson, 1999):

∇× B

µ
− ε∂E

∂t
= σdcE + J , (4)15

∇×E +
∂B

∂t
= 0. (5)

The dielectric permittivity ε= ε0εr, magnetic permeability µ= µ0µr, and direct current conductivity σdc are generally spa-

tially variable and represent the electromagnetic properties of the subsurface. Here, we neglect dispersive effects (∂εr/∂ω = 0)

as well as the imaginary part of the dielectric permittivity (εr ∈ R). The relative magnetic permeability is assumed to be that

of vacuum (µr = 1). The source current density J is applied at the position of the transmitter antenna.20

The relative permittivity of the subsurface εr = εr,b is calculated from the water content distribution θ resulting from the

Richards equation using the complex refractive index model (CRIM) (Birchak et al., 1974):

εr,b(θ,Ts,φ)α = θ · εr,w(Ts)α + (φ− θ) · εαr,a + (1−φ) · εαr,s, (6)

with the geometry parameter α= 0.5 (Roth et al., 1990). In order to apply the CRIM, the porosity φ, the relative permittivity

of water εr,w, the relative permittivity of air εr,a, and the relative permittivity of the soil matrix εs have to be known. The25

relative permittivity of air εr,a was set to 1. Assuming that the sand matrix consists mainly of Quartz (SiO2) grains, the relative

permittivity of the soil matrix εr,s was set to 5 (Carmichael, 1989). The porosity φ is assumed to be equal to the saturated water

content θs (Eq. 2) which is estimated from the data. Following Kaatze (1989), we parameterize the dependency of the relative

permittivity of water εr,w on the soil temperature Ts (◦C) with

εr,w(Ts) = 101.94404−Ts·1.991·10−3
. (7)

In this work, the required direct current conductivity σdc of the subsurface is assumed to be constant in the whole architecture.

6
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2.3 GPR Analysis

Similar to Buchner et al. (2012), we extract the signal travel time t and the according amplitude A at M samples of the GPR

signal (events)5

Ex 7→






 t1

A1


 . . .


 tM

AM





 (8)

with a heuristic approach. This allows us to focus on the phenomena that are represented in the model and to exclude events

of, e.g., reflections originating from compaction interfaces or confining walls. However, this procedure demands an automatic

event association algorithm which associates events extracted from the measured signal with events extracted from the sim-

ulated signal. Thus, the evaluation method presented in this section consists of four steps: (i) signal processing, (ii) event10

detection, (iii) event selection, and (iv) event association.

2.3.1 Signal processing

The GPR signal is processed for further evaluation according to the following steps: (i) time-zero correction, (ii) dewow filter,

(iii) 2D to 3D conversion, (iv) removal of the direct and trailing signal, and (v) normalization.

As the time-zero of the GPR antennas changes over time, we pick the direct signal and subtract it from the radargram for15

time-zero correction. Then, a dewow filter is applied to subtract inherent low frequency wow noise of the GPR signal. Since

the observation is in 3D and the simulation in 2D, we convert the simulated signal to 2.5D, meaning to 3D with translational

symmetry perpendicular to the survey line and parallel to the ground surface (Bleistein, 1986). Note that ASSESS is built

accordingly (Sect. 2.1). In this work, the conversion is done for the frequency and the amplitude separately. First, each trace

is transformed to the frequency domain with the fast Fourier transform (FFT, denoted by ̂). Afterwards, the amplitude is20

modified depending on the angular frequency ω:

Â 7→ Â ·
√
|ωk′ |
2π

exp
(
− iπ

4
sign(ωk′)

)
, (9)

where i is the complex unit, ωk = ∆ω·(k′−K′

2 ) (k′ ∈ {1, . . . ,K ′},K ′ is number of samples per trace enlarged to the next power

of two). Subsequently, all traces are transformed back to the time domain with the inverse FFT. Due to the frequency conversion

and the manipulation, a high frequency noise remains on the signal which is smoothed with a fourth order Savitzky–Golay25

filter (e.g., Press, 2007, we employed the implementation of the ’signal’ package for GNU Octave: https://octave.sourceforge.

io/signal/) using a window width of 41 samples.

Accounting for energy dissipation in 3D requires additional manipulation of the amplitude. Assuming a direct ray path and

horizontal reflector with the reflector distance d and mean square root of dielectric permittivity
√
ε along the ray path, this is

done via30

A 7→A

√√
ε

c0d
. (10)
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Figure 3. The amplitude of a trace is searched for extrema with a neighborhood search algorithm. For the subsequent evaluation, the

amplitude of the detected events is normalized to the maximal absolute amplitude of all events detected in the trace. The direct signal and the

trailing signal of the dewow filter are set to zero in a preprocessing step (Sect. 2.3.1) and events close to these signals are ignored.

Subsequently, the direct signal and the trailing signal of the dewow filter are set to zero. Finally, the each trace is normalized

to its maximal absolute amplitude. Notice that the signal is renormalized later in the analysis of the GPR data (Sect. 2.3.4)

2.3.2 Event detection

To facilitate the identification of relevant events at large signal travel times, the normalized amplitude (original amplitude) is5

amplified quadratically with travel time. Subsequently, the extrema are detected with a local neighborhood search. Then, we

keep a predefined number of events (15) with the largest amplified absolute amplitude. If the original amplitude of an detected

extremum is below a predefined amplitude threshold (0.006) it is discarded in any case. In order to correct the perturbation in

travel time due to the amplification and to cope with the discrete measurement resolution, we fit a Gaussian centered at the

travel time of the detected event with width of ±5 samples to the original amplitude data. The resulting amplitude and travel10

time of the extremum are used for the following evaluation.

2.3.3 Event selection

After the event detection, the measured signal is inspected manually together with the detected events. In this one-time prepro-

cessing step events can either be deleted or added manually. This ensures that only those events enter the parameter estimation

that are also represented in the model. This step is skipped for the analysis of the simulated data.15

2.3.4 Pairwise event association

The selected events extracted from the measured data have to be associated with the detected extracted from the simulated

data for the parameter estimation. Therefore, Buchner et al. (2012) tested all possible combinations of events, using the one

with the minimal summed absolute travel time difference. However, this is only feasible for a small number of events. As we
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Figure 4. Exemplary association of simulated (s) and measured (m) events with indices 1–6 and 1–7, respectively. The color of the dots

indicates the sign of amplitude of the events. (a) The detected events (Fig. 3) are aggregated in clusters to minimize the number of possible

event combinations. The clusters are associated such that the summed absolute travel time difference of the mean travel time of the events

in the cluster is minimal. (b) The events in the clusters are associated according to consistent temporal order and amplitude sign. Hence, if

(ts,1,As,1) is associated with event (tm,2,Am,2), event (ts,2,As,2) can not be associated with event (tm,1,Am,1), if tm,1 < tm,2 or sign(As,2) 6=
sign(Am,1). Solid (dashed) arrows indicate some of the accepted (declined) association combinations. The combination with maximal number

of associations and minimal summed absolute travel time difference is used for evaluation.

are not using a Gaussian convolution of the data but the data themselves, the number of events increases. Hence, testing all

combinations is often prohibitively expensive. In order to exclude combinations a priori, the detected events are aggregated in

clusters (Fig. 4a). Then, these clusters are associated by testing all possible combinations. We use the combination with the

minimal summed absolute travel time difference. Afterwards, the events aggregated in the associated clusters are associated

themselves. The applied association procedure requires the events to have an identical amplitude sign and a consistent temporal5

order which reflects the principle of causality (Fig. 4b). We iterate over all according combinations to find the association with

the maximal number of associated events and the minimal summed absolute travel time difference. It is critical to also consider

combinations where some intermediate events (e.g., (ts,2,As,2) in Fig. 4) can not be associated. After the association of the

events, outliers are detected by calculating the mean and standard deviation of the travel time differences. All associations

are discarded which exhibit an absolute travel time difference larger than 3 standard deviations of all absolute travel time10

differences. Finally, the amplitude of the associated events is normalized to the maximal absolute amplitude of the associated

events in each trace.
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Figure 5. We choose an iterative parameter estimation procedure which (i) allows to minimize the computational cost and (ii) facilitates the

implementation of tagging (Sect. 2.4.1). Therefore, we precondition the Latin hypercube sampled parameter sets with a data set with reduced

number of traces (low resolution data) and use optimization algorithms which compare the parameter sets sequentially. The preconditioned

parameter sets for each ensemble member serve as initial parameters for the final parameter estimation based on high resolution data. The

subsequent evaluation of the ensemble is based on the number of associated events M and the mean absolute error in travel time eMA,t

(Sect. 3.1.2).

2.4 Parameter estimation

Inversion of GPR data typically requires globally convergent parameter estimation algorithms which are computationally ex-

pensive. In order to keep the parameter estimation procedure efficient, we use an iterative strategy (Fig. 5). We start the

optimization procedure by drawing an ensemble of initial parameter sets with the Latin hypercube algorithm (implemented by

the pyDOE package, https://github.com/tisimst/pyDOE). The most expensive operation of the forward simulation is the calcu-

lation of the observation operator, which includes the solution of Maxwell’s equations (Sect. 2.2.4) and the subsequent event5

association (Sect. 2.3). Hence, as time-lapse GPR data are highly correlated in experiment time (e.g., Fig. 13), we equidistantly

subsample the number of traces of the time-lapse GPR radargram and generate a data set with lower temporal resolution. We

use those data to improve the the distribution of the initial parameters (preconditioning). Therefore, the drawn parameter sets

are used to initialize the simulated annealing algorithm (Sect. 2.4.2) which allows for a robust, fast, and easy to implemented

parameter update. Subsequently, the resulting parameters serve as initial parameters for the Levenberg–Marquardt algorithm10

(Sect. 2.4.3) concluding the preconditioning step. The preconditioned parameter sets are used as the initial parameter sets for

the more expensive optimization of high resolution data set with the Levenberg–Marquardt algorithm. The details of the setup

and the analysis of the parameter estimation are given in Sect. 3.1.2.

10
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2.4.1 Objective function

Assuming P parameters pπ and M associations of measured events (tµ,m,Aµ,m) with simulated events (tµ,s(p),Aµ,s(p)), the

χ2 objective function is given by

χ2(p) =
1
2

M∑

µ=1

(
tµ,s(p)− tµ,m

σt,µ

)2

+
(
Aµ,s(p)−Aµ,m

σA,µ

)2

=
1
2

M∑

µ=1

r2t,µ + r2A,µ (11)

with the constant standard deviation of the measured normalized travel times σt,µ = σt and of the measured normalized am-

plitudes σA,µ = σA leading to the residuals in travel time rt,µ and amplitude rA,µ. Due to the oscillating nature of the GPR5

signal and due to the analysis (Sect. 2.3), the χ2 function is not convex and may even be discontinuous at some points, as the

number of associated events M is not necessarily constant during the minimization process. To compensate for adding and

removing simulated or measured events, Buchner et al. (2012) introduced tagging. If the number of measured events is smaller

than the number of the simulated events, the simulated events that are not associated are excluded. Alternatively, if there are

more measured events, measured events without partner are tagged as partnerless. If a reflection event has been tagged and10

becomes untagged after the parameter update, the contribution of the event and its new partner to the objective function is

added to the previous objective function value. If an event has not been tagged and becomes tagged after the parameter update,

the contribution to the cost function is subtracted from the previous objective function value.

2.4.2 Simulated annealing

We choose the simulated annealing algorithm (Press, 2007) to start the minimization of the objective function (Eq. 11), because15

this algorithm is gradient-free and updates the parameters statistically. Additionally, tagging (Sect. 2.4.1) can be implemented

easily and it also allows uphill steps, which can be favorable if the events are not yet associated to their appropriate reflection.

If the parameter update is drawn from the whole parameter space, the algorithm is globally convergent. However, this approach

is typically inefficient. We mainly use the simulated annealing algorithm to find a parameter set that associates the events to

their appropriate reflection such that the more efficient gradient-based algorithm can take over. Hence, we search the neighbor-20

hood for better parameters starting from Latin hypercube sampled initial parameters pπ,0. For each iteration i (1, . . . , I), new

parameters are proposed randomly via

pπ,i+1 = pπ,i +m · (pπ,max−pπ,min) ·up, (12)

with a mobility parameter m= 0.1, uniformly distributed random number up ∼ U(−1,1), and the parameter limits pπ,max

and pπ,min. In order provide the control parameter T , which is an analogue of temperature, we choose an exponential cooling25

schedule

Ti+1 = T0 ·αi+1, (13)
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with α= 0.85 and initial temperature T0 = 103 which is of the order of the initial cost function value. According to Metropolis

et al. (1953), we draw an uniformly distributed random number ud ∼ U(0,1), calculate the acceptance probability

Pi+1 = exp
(
−χ

2
i+1−χ2

i

k ·Ti+1

)
, (14)

choosing parameter k = 1, and accept the proposed parameter set if Pi+1 > ud or else draw a new parameter set.

2.4.3 Levenberg–Marquardt

The Levenberg–Marquardt algorithm is implemented as described by Jaumann and Roth (2017). However, in order to suc-

cessfully apply this gradient-based algorithm to GPR data, the optimization has to be regularized. Therefore, we focus with5

this algorithm in particular on the improvement of small residuals, because if the small residuals improve, the larger residuals

are likely to also improve in subsequent iterations due to the temporal correlation of the data. Therefore, we tag events with

rt,µ > 100 or rA,µ > 100. Tagged events are excluded from the optimization by setting the according entries in the Jacobi

matrix (Jµ,π = ∂rµ/∂pπ) to zero. The event association may also change during the perturbation of the parameters for the

numerical assembly of the Jacobi matrix. This can lead to large changes in the residuals, which in turn may lead to a disturbed10

parameter update. Hence, corresponding entries of large changes in the residual abs(rµ(pperturbed)− rµ(p))> 50 are also set

to zero together with entries of the Jacobi matrix that are larger than 104.

We choose λinitial = 5 as initial value for λ and apply the delayed gratification method by decreasing (increasing) λ by a fac-

tor of 2 (3) if the parameter update is successful (not successful). This assures that the algorithm takes small steps such that

association and the Jacobi matrix can adapt smoothly.15

3 Application

In this section, we apply the presented methods to the acquired GPR data. Therefore, we first explain the setup of the case

study and the parameter estimation procedure (Sect. 3.1.1). Then, we test the method with synthetic data to understand the

phenomenology of the data and capabilities of the method (Sect. 3.2). Finally, we apply the method to the measured data (Sect.

3.3) and analyze the accuracy of the resulting parameters.20

3.1 Setup of the case study

3.1.1 Implementation

The numerical solution of the Richards equation (Eq. 1) is based on µϕ (muPhi, Ippisch et al., 2006) which uses a cell

centered finite volume scheme with full upwinding in space and an implicit Euler scheme in time. The nonlinear equations are

linearized by an inexact Newton method with line search and the linear equations are solved with an algebraic multigrid solver.25

We solve Richards equation in 1D (z dimension) on a structured grid with a resolution of ≈ 0.005 m. Generally, the boundary

condition is implemented with a Neumann no-flow condition. However, during the forcing phases, we prescribe the measured

12
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Figure 6. For the simulation of the GPR signal of antenna 3, we assume a layered subsurface architecture (Fig. 1). The transmitter of the

antenna is represented with an infinitesimal dipole (t) and the electric field is read at the position of the receiver antenna (r). An absorbing

layer is used as boundary condition.

groundwater table as a Dirichlet boundary condition at the position of the groundwater well. We initialize the simulation with

hydraulic equilibrium based on the measured groundwater table position. The simulated water content is converted to relative

permittivity via the CRIM using the mean soil temperature Ts = 8.5 ◦C (Sect. 2.2.4).30

To simulate the temporal propagation of the electromagnetic signal, we solve Maxwell’s equations (Sect. 2.2.4) in 2D with

the MIT electromagnetic equation propagation software (MEEP, Oskooi et al., 2010). The transmitter antenna is represented

with an infinite dipole pointing in x dimension. Thus, we neglect any effects from the real antenna geometry (bow tie), cross

coupling or antenna shielding. The antenna source current density J is given by a Ricker excitation function (first derivative of

a Gaussian–shaped function) with a center frequency of 400 MHz. The receiver antenna is not represented explicitly. Instead,5

Ex is read directly at the position of the receiver antenna. We use the antenna separation of the real GPR system (0.14 m) in

the simulation. Perfectly matched layers (PML) of 0.15 m thickness serve as boundary condition. The initial electromagnetic

field in the domain is zero. We use one tenth of the minimal wavelength λw,min as upper limit for the spatial resolution ∆z:

∆z ≤ λw,min

10
=

c0√
εr,max

10fmax
≈ 0.007 m, (15)

with the speed of light in vacuum c0, maximal frequency fmax = 2·400 MHz, and εr,max = 31.25 corresponding to θs,max = 0.5.10

Hence, we choose the numerical resolution ∆z = 0.005 m for the 2D isotropic, structured, and rectangular grid. Therefore, the

simulated one dimensional relative permittivity distribution is extruded in the y dimension. The Courant number for the FDTD

13
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Figure 7. The available hydraulic potential hwt is measured at the position of the groundwater well xλ times tβ . These measurements are

used as a boundary condition for the Richards equation (Sect. 2.2.1). Estimates for the soil temperature Ts and the direct current conductivity

σdc are derived from TDR related measurements. The actual signal of the GPR system is proportional to x component of the electric field

Ex and measured discretely at experiment time tξ and signal travel time tτ . This signal is used for event detection and event selection (Sect.

2.3). The simulated water content distribution is converted to relative permittivity distribution with the CRIM and used to solve Maxwell’s

equations (Sect. 2.2.4 and 3.1.1). After event detection, the simulated events are assigned to measured events. The mapping of the events is

used to calculate objective function value during the optimization step (Sect. 2.4). Dashed arrows indicate initial preprocessing steps, whereas

solid arrows indicate iterative steps required for the optimization.

method is set to 0.5.

To avoid multiple reflections at the air-soil boundary, we set the relative permittivity above the soil to 3.5, which is typical for

dry sand. This is justified, as no evaluation of air wave or ground wave is done and the amplitude is normalized according to15

the detected events. The permittivity of the basement below ASSESS is set to 23.0, based on previous simulations. The direct

current conductivity of the subsurface σdc is set to 0.003 Sm−1 (Sect. 2.2.4). All electromagnetic properties are smoothed

by MEEP according to Farjadpour et al. (2006). The subsurface architecture is represented with layers. The position of these

layers is parameterized and can be estimated. For illustration, the setup is shown in Fig. 6.

3.1.2 Setup of the parameter estimation5

General setup of the optimization is explained with Fig. 7. This setup is used in an iterative approach (Fig. 5), where we selected

ever fewer of the traces of the time-lapse GPR data to generate a data set with decreased temporal resolution. The data set with

high (low) resolution includes 86 (9) traces corresponding to one trace per 15 (150) min. We draw 40 initial parameter sets with

the Latin hypercube algorithm within the sample range given in Table 1 and use the data set with low temporal resolution to

improve these parameter sets. Therefore, we run 200 iterations with the simulated annealing algorithm (Sect. 2.4.2). Notice that10
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the parameter fit range given in Table 1 determines the parameter update via pπ,max and pπ,max (Eq. 12). After the simulated

annealing algorithm, we run maximally 15 iterations of the Levenberg–Marquardt algorithm (Sect. 2.4.3) which completes the

precondition step. The resulting parameter sets serve as initial parameters for the Levenberg–Marquardt algorithm which is

applied to the data with high temporal resolution.

In order to evaluate the performance of the ensemble members, we use the mean absolute error in travel time eMA,t, because

this statistical measure is independent of the number of associated events. These are accounted for by choosing those 10

members with minimal eMA,t where at least 85% of the measured events are associated. Each of these members has locally

optimal parameters. However, the exact position of these local minima typically depends on (i) the settings of the optimization

algorithms, (ii) the choice of the events to be evaluated, and (iii) the random numbers drawn in the simulated annealing5

algorithm. There is also no guarantee that the global optimum was found by one of the ensemble members. However, the

distribution of these 10 best ensemble members contains valuable information about the shape of the χ2 surface. To account

for this information, we (i) analyze the mean parameter set of the best members and (ii) use the according standard deviation

to indicate the uncertainty of these parameters. Notice that the mean parameter set is not necessarily optimal. However, if

uncertainty on the parameters is small, this result is typically more reliable results than the best ensemble member.10

The standard deviation of the measured data, σt ≈ 6 · 10−4 and σA ≈ 5 · 10−3 for normalized travel times and amplitudes is

used as the standard deviation of the residuals in the objective function (Sect. 2.4.1).

3.2 Synthetic data

3.2.1 Phenomenology

The phenomenology of the transition zone reflection for characteristic times during imbibition, relaxation, and drainage was15

discussed by Klenk et al. (2015) for typical coarse sand. Here, we focus on the temporal development of this reflection during

imbibition and equilibration. Therefore, we simulated water content distribution in the 1D profile located at 17.05 m of ASSESS

using parameters typical for coarse-textured sandy soils (Table 2). The results are visualized over time (Fig. 8a) and over the

water content (Fig. 8b). Initialized with hydraulic equilibrium, the simulation starts with the initial drainage step (Sect. 2.2.3)

where the groundwater table is lowered. Hence, the material with high initial water content is desaturated. After the subsequent20

equilibration step, the groundwater table is raised during the subsequent imbibition step. Generally, the Brooks–Corey param-

eterization (Eq. 2) features a sharp kink where air enters the material at the upper end of the capillary fringe. Additionally, the

imbibition causes another kink in the water content distribution (at marker (2) in Fig. 8b), because the relaxation time from the

hydraulic non-equilibrium is much shorter at high water contents compared to the relaxation time at low water contents. This

is due to the strong non-linear dependency of the hydraulic conductivity (Eq. 3) on the water content leading the differences in25

hydraulic conductivity of several orders of magnitude. Hence, the transition zone is sharpened during the imbibition. During

the equilibration step after the first imbibition, the transition zone smoothes. Thus, the water content increases in the material

with low water content (3) and decreases in the material with high water content (4). This smoothing process strongly depends

on both the soil water characteristic and the hydraulic conductivity function. Sharpening and smoothing of the transition zone

15
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Figure 8. We used hydraulic parameters representing coarse-textured sandy soils (Table 2) to generate the synthetic data for parameter

estimation according to Sect. 3.1.1. Subfigure (a) shows the simulated water content in color code over experiment time, whereas subfigure (b)

shows the same data in a line plot emphasizing temporal development of the water content distribution. The initial water content distribution

is marked with a black dashed line. Subfigure (c) shows the according simulation of the GPR signal. The imbibition leads to a characteristic

transition zone reflection (2). The temporal evolution of this reflection is sensitive on the initial water content distribution, the soil water

characteristic and the hydraulic conductivity function. Except for the normalization, the data are processed according to Sect. 2.3, including

a dewow filter and 2D to 3D conversion. In contrast to the quantitative evaluation, the radargram is normalized to the maximal absolute

amplitude, facilitating the visual comparison of the traces. The markers are used consistently in this paper and are further explained in the

text.
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are repeated consistently for the other subsequent imbibition and equilibration phases (5), (6) and (7), (8).30

According to the CRIM (Sect. 2.2.4), the relative permittivity distribution has the same shape as the water content distribution.

Hence, kinks in the water content distribution directly induce partial reflections of the GPR signal (Fig. 8c). Shortly after start-

ing the imbibition, the amplitude of the reflection at the additional kink (2) increases. After passing the material interface (V),

the spatial distance of the kinks increases such that the two resulting reflection wavelets (3) and (4) are separable. The signal

in between these wavelets is a superposition of infinitesimal reflections which contain detailed information about the form of

the transition zone. Notice that the reflection (3) scans the initial water content distribution, which in steady state corresponds

to the soil water characteristic. With progressing equilibration, the amplitude of reflection (3) decreases as the transition zone

smoothes. The GPR signal of the subsequent imbibition and equilibration phases (5), (6) and (7), (8) show similar behavior5

and emphasize the relatively long time scale for hydraulic equilibration of sandy materials.

In summary, this numerical simulation confirms qualitatively (i) that the dynamics of the fluctuating groundwater table is sen-

sitive to both the soil water characteristic and the hydraulic conductivity function and (ii) that the transition zone reflection

leads to tractable reflections during the imbibition step.

3.2.2 Results and discussion10

The resulting soil water characteristics for material A (Fig. 9a) exhibit a similar curvature but are shifted. Both the parameters

h0 and λ influence the shape of the desaturated transition zone. Hence, merely evaluating the shape of the desaturated part of

the transition zone is not necessarily sufficient to uniquely identify both parameters leading to large correlation coefficients.

However, parameter h0 additionally determines the extent of the capillary fringe. If the evaluation is also sensitive on the extent

of the capillary fringe, h0 can be uniquely identified which significantly decreases the correlation between h0 and λ. Hence,

we conclude that the strong correlation of the parameters h0,C and λC (−0.7, Fig. 10) indicates that the evaluation is more

sensitive to the shape of the desaturated part of the transition zone than to the extent of the capillary fringe.

As the architecture is a layered structure where material C is located above material A (Fig. 6), the water content in material C5

contributes to the travel time of the other reflections. This introduces correlations of all the parameters associated with the soil

water characteristic of material C to θs,A. A high correlation of parameters indicates that the problem is not well-posed. This

typically increases the number of local minima and thus the uncertainty of the parameters.

The saturated hydraulic conductivity of material A (Fig. 9b) is approximately one order of magnitude smaller than the saturated

hydraulic conductivity of material C. As the 1D architecture is forced at the lower boundary, the hydraulic conductivity of10

material A limits the water flux into material C. Hence, the data are not sensitive on Ks,C. Yet, the uncertainty of the hydraulic

conductivity decreases for low water contents as the reflection at the additional kink (Sect. 3.2.1) is sensitive to the hydraulic

conductivity. The hydraulic conductivity function (Eq. 3) is not unique if Ks is not fixed. This leads to a strong correlation of

the parameters Ks,C and τC (0.6, Fig. 10). Note that the uncertainty of the saturated hydraulic conductivity of material A also

influences the uncertainty of the hydraulic conductivity of material C.15

The uncertainty in the soil water characteristic of material C (Fig. 9c) is largest for low water contents, as there are only few data

points available. In particular, this increases the uncertainty of λA (±0.7, Table 2). The material properties of the unsaturated
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Figure 9. The resulting material parameters estimated from synthetic data are shown for the 10 best ensemble members (Sect. 3.1.2) together

with the mean of these parameter sets and the true parameter set (Table 2). The plot range of the parameters is adjusted to the water content

range of the data.

material A are only monitored during the first ≈ 5 h of the experiment and are independent of the largest part of the other data.

This regularizes the optimization leading to fewer local minima. Similar to material C, the parameters h0,A and λA are strongly

correlated (−0.6). Yet, the uncertainty in h0,A is relatively small (±0.008, Table 2) mainly because it is essentially uncorrelated20

to other parameters. In contrast, the parameter θs,A is correlated to the parameters h0,C, λC, θs,C, and θr,C as wrong parameters

for material C introduce changes in the total water content which can be partially balanced out by adjusting θs,A.

The uncertainty of the saturated hydraulic conductivity of material A (Fig. 9d) is comparably small as the largest fraction of

the data are influenced by this parameter. Hence, the parameters τA and Ks,A are only very weakly correlated.

The correlation coefficients (Fig. 10) also show that both the permittivity and the thickness of the gravel layer can be estimated25

reliably with the presented evaluation method using travel time and amplitude information of a single channel. Evaluation

methods that merely exploit the signal travel time (e.g., Gerhards et al., 2008), require additional measurements to achieve this

goal.

In order to further investigate the quality of the mean parameter set, we simulated the resulting water content distribution

(Fig. 11a) and calculated the difference to the true water content distribution (Fig. 11b). Due to the narrow pore size distribution30
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Figure 10. The correlation coefficients for the mean parameter set are analyzed in detail in the text. Notice that the porosity of the gravel

(θs,G) as well as the position of the material layers (h1 and h2) can be reliably estimated from single channel GPR when evaluating both the

signal travel time and amplitude.
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Figure 11. We calculated (a) the resulting water content distribution of the mean parameter set and (b) the difference to the true water

content distribution (Fig. 8). The mean absolute deviation of the volumetric water content is 0.004. The over all balance of the volumetric

water content can be characterized by calculating the mean of the summed difference per grid cell over all measurement times which yields

−0.003. Hence, the mean parameter set generally underestimates the water content in the profile.
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Figure 12. The evaluation the synthetic GPR data is separated in three parts: Subfigure (a) shows the detected (Sect. 2.3.2) and selected

(Sect. 2.3.3) events which are used as synthetic measurement data. Except for the normalization, the data are processed according to Sect.

2.3, including a dewow filter and 2D to 3D conversion. The radargram is normalized to the maximal absolute amplitude, facilitating visual

comparison of the traces. Subfigure (b) shows resulting differences in travel time and amplitude of the mean parameter set. The differences

of the amplitude are given in arbitrary units which are consistent for the whole work. Subfigure (c) shows standardized residuals of the

differences, essentially zooming into the small differences given in subfigure (b). Note that outliers are set onto the boundary. The markers

for the reflections are used consistently in this paper.
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of the sandy material, small deviations in the parameters h0 and λ lead to large differences in the volumetric water content

above the capillary fringe (≈±0.04). Combined with deviations in the position of the material interface, the largest differences

in volumetric water content reach up to 0.17. Still, the mean absolute deviation of the volumetric water content is 0.004.

These deviations also cause residuals in the GPR signal (Fig. 12), which are most evident for the reflection at the gravel layer

(VI). The bias of its travel time shows that the total water content above the gravel layer is underestimated with the mean

parameter set. This bias is essentially balanced out with the properties of the gravel layer. However, the reflection originating

from the basement of ASSESS (VII) reveals residuals that decrease as soon as the groundwater table is above the initial

groundwater table. This indicates (i) deviations in the initial water content distribution and (ii) that the hydraulics during the

initial drainage phase is not correct.5

Similar to the analysis of the deviation in water content (Fig. 11), the largest residuals in unsaturated hydraulics are found

where the groundwater table is crossing the interface of materials A and C. This indicates that the interference of the according

reflections still contains information which could not be exploited in the parameter estimation procedure. Apart from that, the

deviations in the material properties of unsaturated material C do not lead to significant residuals in the GPR signal, although

the deviations in water content are considerable.10

3.3 Measured data

3.3.1 Phenomenology

The common offset GPR measurement (Fig. 13a) reveals the initial state of ASSESS. The reflections of the material interfaces

are marked with uppercase roman numbers (I, II, III, IV, V, VI, and VII) which were introduced in Fig. 1. Compaction interfaces

were generated during the construction process of ASSESS. The most pronounced of them are marked with lowercase roman15

numbers (i, ii, iii, iv, and v). In particular, the reflection of compaction interface (iv) close to the reflection of the groundwater

table (1) are difficult to separate from reflections from material interfaces. Reflections from confining walls are most visible

around 1 m (W) but influence the signal for more than 2 m. The reflection of the edge of the L–element (L) is particularly

prominent. As ASSESS is confined by walls at all four sides and approximately 4 m wide, the walls parallel to measurement

direction also influence the measured signal.20

The time-lapse GPR measurement was recorded at 17.05 m (Fig. 13b). As the groundwater table is raised, the reflection origi-

nating from the groundwater table (2) separates from the reflection of the compaction interface (iv) and its amplitude increases.

After passing the material interface, the reflection (2) splits in two separate reflections (3) and (4) due to the strong dependency

of the hydraulic conductivity on the water content (Sect. 3.2.1). As the transition zone is smoothing during the equilibration

phase, the amplitude of reflection (3) decreases and the distance of the reflections (3) and (4) increases. During the subsequent25

imbibition step, the reflections are directly separated. According to the analysis of the synthetic data (Sect. 3.2.1), the effects

of the smoothing water content distribution are most clearly visible during the relaxation phase at the reflections (5) and (6).

However, the associated measured signals interfere with the direct wave, the ground wave, and the reflection from the com-

paction interface (i) which exacerbates the identification of these effects. The reflections (7) and (8) measured during the final

21

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-538
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 13 September 2017
c© Author(s) 2017. CC BY 4.0 License.



imbibition phase confirm the previous observations.30

Together with the water content distribution, the time-lapse GPR data also contain information about the subsurface archi-

tecture. However, separating signal contribution from the subsurface architecture and the hydraulic dynamics is not always

possible. Here, this is most prominent for the reflection of the material interface (V). Initially, the amplitude of this reflection

is large because the water content in material C is near the residual water content, whereas the water content in material A

is significantly higher at the material interface. As soon as both materials are water saturated, the amplitude of the material

interface reflection (V) is low since the effective porosities of the two materials are similar. Thus, the amplitude of the reflected

signal originating from the material interfaces may change depending on the hydraulic state.5

Additional information about the subsurface architecture can be inferred from the reflection at the material interface between

material A and the gravel layer (VI) and from the reflection at the material interface of the gravel layer and the concrete base-

ment (VII). These reflections are in particular suitable to analyze the total change of water content over time.

In summary, we note that the characteristic properties of the transition zone reflection during the imbibition and equilibration

steps that were identified in the simulation (Fig. 8) can also be identified in the measured data (Fig. 13).10

3.3.2 Results and discussion

As the GPR measurements cover only a small portion of the subsurface architecture, we restricted the hydraulic representation

to 1D (Sect. 3.1.1). Hence, we neglect 2D effects such as lateral flow. This has to be considered during the event selection

of measured data (Sect. 2.3.3). Therefore, we merely focus the evaluation on the imbibition phase of the experiment as the

effect of lateral flow in fluctuating groundwater table experiments is largest during drainage and close to the capillary fringe

(Jaumann and Roth, 2017).

The identification of relevant events is more difficult for the measured data than for synthetic data due to additional reflections

of the GPR signal which are not represented. The most important representation errors are presumed to be the (i) reduced5

dimensionality of the representation of the inherently three dimensional GPR antennas and ASSESS test site using a 1D hy-

draulic and a 2.5D electrodynamic model, (ii) neglected small-scale heterogeneity in particular associated with compaction

interfaces, (iii) neglected reflections from confining walls, (iv) neglected roughness of material interfaces, (v) influences of the

antenna characteristics on the GPR signal in particular including the direct wave, the ground wave, temporal fluctuation of

time-zero, and the source wavelet, (vi) assumption of a constant direct current conductivity, and (vii) assumption of a constant10

soil temperature for the calculation of the relative permittivity of water.

The main findings concerning the mean parameters for the synthetic data (Sect. 3.2.2) can also be identified for the measured

data, i.e. (i) the shift in the soil water characteristic of material C, (ii) the large uncertainty of the saturated hydraulic conduc-

tivity of material C, (iii) the high uncertainty of the soil water characteristic of material A for low water contents, and (iv) the

high sensitivity on Ks,A.15

Compared to the uncertainties based on synthetic data (Table 2), the uncertainty of the resulting mean parameters (Table 3)

mostly increased due to representation errors. Yet, the parameters estimated from TDR measurements (Jaumann and Roth,

2017) are within the standard deviation of the mean parameter set except for four parameters (Table 3). The deviations of these
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Figure 13. We show a common offset measurement of the hydraulic state of ASSESS at the beginning of the experiment (a). The vertical

line indicates the position of the time-lapse measurement shown in subfigure (b). The common offset (time-lapse) data was measured with

antenna 2 (3). Hence, in particular the measured GPR signal of the direct wave and the ground wave is slightly different. Both radargrams are

measured with internal channels with an antenna separation of a= 0.14 m. Except for the normalization, the data are processed according

to Sect. 2.3. In contrast to the quantitative evaluation, the radargram is normalized to the maximal absolute amplitude, facilitating the visual

comparison of the traces. The markers are used consistently in this paper and are further explained in the text.
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Figure 14. The resulting material parameters estimated from measured data are shown for the 10 best ensemble members (Sect. 3.1.2)

together with the mean of these parameter sets (Table 3) and a reference parameter set determined from TDR data acquired during the same

experiment (Jaumann and Roth, 2017). The plot range of the parameters is adjusted to the water content range of the corresponding data.

parameters are analyzed in the following.

The parameter θr,C estimated from the GPR data is approximately a factor 3 larger than the estimated value based on the20

TDR data. Essentially, there are three main reasons for this. First, by evaluating the travel time of reflection (V), we use the

integrated water content for inversion. This also includes the compaction interface (i) which is not represented in the model.

At the beginning of the experiment, the amplitude of this reflection is comparable to the amplitude of the reflection originating

from the interface of material A and C (V). Notice that the amplitude of the reflection (i) does not vanish, but decreases when

the material is saturated at the end of the experiment. This indicates that this reflection originates from changes in both the25

small-scale texture of the material and the stored water content at the beginning of the experiment. Hence, as this compaction

interface is not represented in the model, the resulting θr,C is increased coping for this representation error. Second, a devia-

tion in the position of the groundwater table with reference to the antenna position at the surface can be partially adapted by

changing θr,C. As the position of the surface is subject to change over the years, the measurements of the groundwater table

are referenced to a fixed point at the end of the groundwater well, leaving the exact position of the surface relative to ground-30

water table uncertain. According to Buchner et al. (2012), the accuracy of the ASSESS architecture when compared to GPR
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Figure 15. The evaluation the measured GPR data is separated in three parts: Subfigure (a) shows the detected (Sect. 2.3.2) and selected

(Sect. 2.3.3) events which are used as synthetic measurement data. Except for the normalization, the data are processed according to Sect. 2.3.

The radargram is normalized to the maximal absolute amplitude, facilitating visual comparison of the traces. Subfigure (b) shows resulting

differences in travel time and amplitude of the mean parameter set. The differences of the amplitude are given in arbitrary units which are

consistent for the whole work. Subfigure (c) shows standardized residuals of the differences given in subfigure (b). Note that outliers are set

onto the boundary. The markers for the reflections are used consistently in this paper. Since the hydraulic 1D model cannot represent lateral

flow present in initial drainage, we neglect the measured events of the first 2 h. Additionally, outlying events which have a different sign

amplitude are not considered for event association (Sect. 2.3.4).
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measurements is ±0.05 m. The estimation of an offset to the Dirichlet boundary could mitigate this problem, but would in any

case increase the number of local minima significantly making the optimization process less stable. Third, evaluating the TDR

data, we find that an underestimation of θr,C is likely due to the lack of TDR measurements at low hydraulic potential. Hence,

the underestimation of θr,C can be compensated with h0 and λ.35

Compared to the evaluation of the TDR data, the resulting value for parameter τC is a factor 2 larger for the GPR evaluation.

This parameter adjusts the hydraulic conductivity for the unsaturated material and is mainly determined with the reflections

(3) and (5) originating from the additional kink during imbibition (Fig. 15). These reflections exhibit a small amplitude for low

water contents. Yet, both reflections interfere with the rather prominent reflection originating from the compaction interface

(i). Additionally, the reflection (5) also interferes with parts of the direct and the ground wave. Hence, the travel time of these5

reflections does hardly change leading to an underestimation of the hydraulic conductivity for low water contents.

Similar to parameter θr,C, the parameter θr,A yielded from the GPR evaluation is approximately a factor 3 smaller than the re-

sult from the TDR evaluation. However, this parameter can only be approximated evaluating the GPR data as they lack events

that are influenced by low water content.

The resulting value for parameter Ks,A is factor 2 smaller for the GPR evaluation compared to the result from the TDR evalu-10

ation. This parameter limits the flux through the lower boundary as the domain is forced with a Dirichlet boundary condition.

Hence, the parameter can be used to cope with errors in the boundary condition. Forcing ASSESS with a groundwater well

instantiates a 3D flux (Jaumann and Roth, 2017). Since this is not represented, the hydraulic potential and hence the water flux

is overestimated. This is compensated in the GPR evaluation by decreasing Ks,A.

The estimated interface position of the material A and C corresponds well the to ground truth measurements acquired during15

the construction of ASSESS (Table 3). In contrast, the estimated position of the gravel layer deviates from the according ground

truth measurements. However, the estimates are still within the uncertainty of the ground truth measurements when compared

to GPR measurements.

The evaluation of the GPR measurement data (Fig. 15) shows that deviations from the shape of the reflected wavelet contributes

to the residuum significantly. These deviations have three main origins: (i) unknown shape of the source wavelet of the GPR20

antenna when coupled to the subsurface, (ii) the assumption of a constant direct current conductivity for the whole subsurface,

and (iii) neglected roughness of the material interfaces which influences the shape of the reflected wavelet.

Evaluating the different reflections (V) and (VII), the residuals in travel time suggest an incorrect width of the wavelet. At the

beginning of the experiment, the simulated wavelet is too broad for reflection (V) whereas it is too narrow for the reflection

(VII). This indicates that (i) the assumption of a constant direct electric conductivity in the whole architecture is suboptimal25

and that (ii) the direct electric conductivity can be assessed with GPR measurements.

The residuals for reflection (VI) are the major contribution to the cost function as different representation errors are combined.

Of all the events in the wavelet, the events with the largest travel time exhibit the highest residuals. Due to the large grain size

of the gravel, the real material interface is rougher than its representation. This leads to a non–symmetric broadening of the

measured compared to the simulated wavelet (Dagenbach et al., 2013). The residual of the other events in the wavelet can be30

attributed to a combination of representation errors associated with the boundary condition, suboptimal parameters, incorrect
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direct current conductivity, and also to lateral water flow which not represented in 1D model.

A large part of the residuals associated to the reflections (3), (4), (5), and (6) originates from interferences with the compaction

interface (i) which is not represented. Interferences typically are not quantitatively evaluable if not all contributions are cor-

rectly represented. This seems also to be the case for the signal during the forcing which is highly sensitive to the shape of the35

wavelet.

Regarding the total residuum, the error originating from assuming a constant soil temperature for the calculation of the relative

permittivity of water is relatively small. However, it is worth noting, that the according residuals exceed one standard deviation

in signal travel time.

Notice that the distribution and the support of the measurement data (i) differs between the TDR sensors and GPR mea-5

surements (Fig. 1), (ii) relates directly to the applicability of the resulting parameters for the different evaluations, and (iii)

influences the quantitative effect of different representation errors. The TDR sensors are distributed over a 2D slice of AS-

SESS measuring in all available materials (Fig. 1). Yet, the measurement volume is limited to the position of the sensors

yielding the average permittivity along the TDR rods. Hence, these measurements are subject to representation errors such

as small-scale heterogeneity or uncertainty in the sensor position (Jaumann and Roth, 2017). The GPR measurement data do10

not cover the whole ASSESS test site and their support is depending on the evaluated events of the wavelet. This includes the

whole depth average (travel time) and the contrast (amplitude) of both the permittivity and the electrical conductivity. Hence,

these measurement data are subject to representation errors such as neglected (i) compaction interfaces, (ii) spatial variation of

the direct current conductivity, and (iii) roughness of certain material interfaces. Hence, the previous analysis illustrates how

GPR-determined parameters can differ from TDR-determined ones making joint evaluation procedures challenging.15

4 Conclusions

We demonstrated that effective soil hydraulic material properties and the subsurface architecture can be estimated accurately

from single channel time-lapse GPR measurement data. The GPR-determined subsurface architecture corresponds well to the

ground truth and the resulting material properties compare favorably to material properties determined from an independent

analysis of TDR measurements acquired during the same experiment.20

These results are based on (i) a fluctuating groundwater table experiment at ASSESS, (ii) a new heuristic semi-automatic

approach to automatically extract and associate relevant parts of simulated and measured radargrams, and (iii) an elaborate

optimization procedure coupling different optimization algorithms which employ a subsampled data set to precondition the

initial parameter proposals.

We confirmed that a fluctuating groundwater table experiment introduces characteristic transition zone reflections. A detailed25

qualitative analysis of its phenomenology indicates that this type of reflection is sensitive on soil hydraulic material properties.

Employing the presented approaches on synthetic data shows that the true parameters are within the standard deviation corre-

sponding to the resulting mean parameter set based on the ten best ensemble members. This mean parameter set describes the

hydraulic dynamics with a mean absolute error in volumetric water content of 0.004. Additionally, we found that the parameter
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correlations are mostly specific to the experiment type and the subsurface architecture. Using travel time and amplitude infor-

mation in the evaluation allowed to estimate effective permittivity and layer depth simultaneously with a single GPR channel.

The resulting parameters for the measured data are mostly consistent with results from the TDR measurement data. We dis-

cussed the deviations of the parameters and basically associated them with representation errors or the lack of available mea-

surement data. Critical representation errors comprise the neglected (i) compaction interfaces, (ii) spatial variation of the direct

current conductivity, and (iii) roughness of certain material interfaces.

5 Data availability

The underlying measurement data are available at http://ts.iup.uni-heidelberg.de/data/jaumann-roth-2017-gpr-hess.zip
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Table 1. The fit range limits the parameter space available for parameter estimation and is in particular used by the simulated annealing

algorithm to draw parameter updates (Sect. 2.4.2). The sample range is used to generate an ensemble of initial parameter sets with the Latin

hypercube algorithm.

Material Parameter Fit range Sample range

min max min max

C

h0 (m) −0.25 −0.05 −0.20 −0.10

λ (−) 1.0 5.0 2.0 4.0

K0 (m s−1) 10−4.1 10−2.9 10−4 10−3

τ (−) −1.0 2.0 0.0 1.0

θs (−) 0.33 0.43 0.36 0.40

θr (−) 0.00 0.10 0.02 0.08

A

h0 (m) −0.30 −0.10 −0.25 −0.15

λ (−) 1.0 5.0 2.0 4.0

K0 (m s−1) 10−5.1 10−3.9 10−5 10−4

τ (−) −1.0 2.0 0.0 1.0

θs (−) 0.36 0.46 0.39 0.43

θr (−) 0.00 0.10 0.02 0.08

Gravel θs (−) 0.30 0.50 0.38 0.42

Architecture
h1 (m) 0.90 1.10 0.95 1.05

h2 (m) 0.10 0.30 0.15 0.25
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Table 2. The mean and the standard deviation are calculated using the resulting parameters from the ten best ensemble members (Sect. 3.1.2)

estimated from synthetic data. The corresponding material functions are given in Fig. 9. Notice that the true parameter set lies within the

standard deviation of the mean parameter set.

Material Parameter Truth Mean results

C

h0 (m) −0.15 −0.13± 0.02

λ (−) 3.5 3.2± 0.3

K0 (m s−1) 10−3.5 10−3.4±0.2

τ (−) 0.5 0.6± 0.2

θs (−) 0.38 0.38± 0.01

θr (−) 0.03 0.027± 0.006

A

h0 (m) −0.20 −0.199± 0.008

λ (−) 2.5 2.8± 0.7

K0 (m s−1) 10−4.5 10−4.47±0.05

τ (−) 0.5 0.4± 0.5

θs (−) 0.41 0.41± 0.02

θr (−) 0.05 0.06± 0.02

Gravel θs (−) 0.40 0.40± 0.03

Architecture
h1 (m) 1.00 0.99± 0.02

h2 (m) 0.20 0.20± 0.01
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Table 3. The mean and the standard deviation are calculated using the resulting parameters from the ten best ensemble members (Sect.

3.1.2) estimated from measured data. The corresponding material functions are given in Fig. 14. The reference parameters for the materials

A and C are determined from TDR data acquired during the same experiment investigated in this work (Jaumann and Roth, 2017). Note

that the according standard deviations are determined formally from a single Levenberg–Marquardt run and hence are only representative

for one local minimum. Also, these standard deviations are given with the understanding that they are specific to the applied algorithm and

will change for different algorithm parameters. Hence, these standard deviations are in particular not suitable to compare the precision of

the TDR and GPR evaluation. Notice that for the TDR evaluation the porosity of the materials is assumed to be known from core samples.

The reference parameters for the subsurface architecture are calculated from ground truth measurements acquired during the construction of

ASSESS. The corresponding standard deviations are given according to Buchner et al. (2012).

Material Parameter Reference Mean results

C

h0 (m) −0.159± 0.004 −0.13± 0.03

λ (−) 3.28± 0.02 3.3± 0.7

K0 (m s−1) 10−3.70±0.02 10−3.6±0.3

τ (−) 0.74± 0.06 1.4± 0.4

θs (−) 0.38 0.38± 0.01

θr (−) 0.026± 0.002 0.071± 0.005

A

h0 (m) −0.184± 0.005 −0.20± 0.03

λ (−) 1.94± 0.07 2.1± 0.7

K0 (m s−1) 10−4.212±0.004 10−4.5±0.1

τ (−) 0.33± 0.07 0.4± 1.0

θs (−) 0.41 0.40± 0.01

θr (−) 0.025± 0.004 0.07± 0.03

Gravel θs (−) 0.41± 0.02

Architecture
h1 (m) 0.99± 0.05 0.97± 0.02

h2 (m) 0.13± 0.05 0.17± 0.02
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