Skip to main content
Log in

Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and objective

Mastitis is defined as inflammation of the mammary gland in domestic dairy animals and humans. Salidroside, a major component isolated from Rhodiola rosea L., has potent anti-inflammatory properties, but whether it can be used in mastitis treatment has not yet been investigated. The aim of this study was to assess the protective effects of salidroside against lipopolysaccharide (LPS)-induced mastitis in mice and the mechanism of action.

Methods and results

We used a mouse mastitis model in which mammary gland inflammation was induced by LPS challenge. Salidroside administered 1 h before LPS infusion significantly attenuated inflammatory cell infiltration, reduced the activity of myeloperoxidase in mammary tissue, and decreased the concentration of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in a dose-dependent manner. Further studies revealed that salidroside down-regulated phosphorylation of LPS-induced nuclear transcription factor-kappaB (NF-κB) p65 and inhibitor of NF-κB α (IκBα) in the NF-κB signal pathway, and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in MAPKs signal pathways.

Conclusions

This study demonstrates that salidroside is an effective suppressor of inflammation and may be a candidate for the prophylaxis of mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Viguier C, et al. Mastitis detection: current trends and future perspectives. Trends Biotechnol. 2009;27(8):486–93.

    Article  PubMed  CAS  Google Scholar 

  2. Bradley AJ. Bovine mastitis: an evolving disease. Vet J. 2002;164(2):116–28.

    Article  PubMed  CAS  Google Scholar 

  3. Burvenich C, et al. Severity of E. coli mastitis is mainly determined by cow factors. Vet Res. 2003;34(5):521–64.

    Article  PubMed  Google Scholar 

  4. Elazar S, et al. Essential role of neutrophils but not mammary alveolar macrophages in a murine model of acute Escherichia coli mastitis. Vet Res. 2010;41(4):53.

    Article  PubMed  Google Scholar 

  5. Bannerman DD, et al. Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. J Dairy Sci. 2003;86(10):3128–37.

    Article  PubMed  CAS  Google Scholar 

  6. Lee JW, et al. Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. J Dairy Sci. 2003;86(7):2382–9.

    Article  PubMed  CAS  Google Scholar 

  7. Ma C, et al. Preparative purification of salidroside from Rhodiola rosea by two-step adsorption chromatography on resins. J Sep Sci. 2009;32(2):185–91.

    Article  PubMed  CAS  Google Scholar 

  8. Wu YL, et al. Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biol Pharm Bull. 2008;31(8):1523–9.

    Article  PubMed  CAS  Google Scholar 

  9. Lang CH, et al. Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta, -6, and high-mobility-group protein-1 in skeletal muscle. Shock. 2003;19(6):538–46.

    Article  PubMed  CAS  Google Scholar 

  10. Chu X, et al. Ceftiofur attenuates lipopolysaccharide-induced acute lung injury. Int Immunopharmacol. 2010;10(5):600–4.

    Article  PubMed  CAS  Google Scholar 

  11. Guan S, et al. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int Immunopharmacol. 2011;11(12):2194–9.

    Article  PubMed  CAS  Google Scholar 

  12. Brouillette E, Malouin F. The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes Infect. 2005;7(3):560–8.

    Article  PubMed  Google Scholar 

  13. Zhu YM, et al. Protective effect of CpG-DNA against mastitis induced by Staphylococcus aureus infection in a rat model. Int Immunopharmacol. 2007;7(4):435–43.

    Article  PubMed  CAS  Google Scholar 

  14. Gonen E, et al. Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis. Cell Microbiol. 2007;9(12):2826–38.

    Article  PubMed  CAS  Google Scholar 

  15. Notebaert S, Meyer E. Mouse models to study the pathogenesis and control of bovine mastitis: a review. Vet Q. 2006;28(1):2–13.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta V, et al. A dose dependent adaptogenic and safety evaluation of Rhodiola imbricata Edgew, a high altitude rhizome. Food Chem Toxicol. 2008;46(5):1645–52.

    Article  PubMed  CAS  Google Scholar 

  17. Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: assessment of inflammation in rat and hamster models. Gastroenterology. 1984;87(6):1344–50.

    PubMed  CAS  Google Scholar 

  18. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625.

    Article  PubMed  CAS  Google Scholar 

  19. Zheng J, Watson AD, Kerr DE. Genome-wide expression analysis of lipopolysaccharide-induced mastitis in a mouse model. Infect Immun. 2006;74(3):1907–15.

    Article  PubMed  CAS  Google Scholar 

  20. Paape M, et al. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol Neoplasia. 2002;7(2):109–21.

    Article  PubMed  Google Scholar 

  21. Yan S, et al. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res. 2011;60(6):589–96.

    Article  PubMed  CAS  Google Scholar 

  22. Boudjellab N, Chan-Tang HS, Zhao X. Bovine interleukin-1 expression by cultured mammary epithelial cells (MAC-T) and its involvement in the release of MAC-T derived interleukin-8. Comp Biochem Physiol A Mol Integr Physiol. 2000;127(2):191–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hirohashi N, Morrison DC. Low-dose lipopolysaccharide (LPS) pretreatment of mouse macrophages modulates LPS-dependent interleukin-6 production in vitro. Infect Immun. 1996;64(3):1011–5.

    PubMed  CAS  Google Scholar 

  24. Hirohashi N, Lei MG, Morrison DC. LPS pretreatment of mouse peritoneal macrophages differentially modulates TNF alpha and iNOS expression. J Endotoxin Res. 1999;5(5–6):251–60.

    CAS  Google Scholar 

  25. Schmitz S, et al. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domest Anim Endocrinol. 2004;26(2):111–26.

    Article  PubMed  CAS  Google Scholar 

  26. Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503.

    Article  PubMed  CAS  Google Scholar 

  27. Blakemore AI, et al. Interleukin-1 receptor antagonist gene polymorphism as a disease severity factor in systemic lupus erythematosus. Arthritis Rheum. 1994;37(9):1380–5.

    Article  PubMed  CAS  Google Scholar 

  28. Panesar N, Tolman K, Mazuski JE. Endotoxin stimulates hepatocyte interleukin-6 production. J Surg Res. 1999;85(2):251–8.

    Article  PubMed  CAS  Google Scholar 

  29. Jirik FR, et al. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol. 1989;142(1):144–7.

    PubMed  CAS  Google Scholar 

  30. Sironi M, et al. IL-1 stimulates IL-6 production in endothelial cells. J Immunol. 1989;142(2):549–53.

    PubMed  CAS  Google Scholar 

  31. Miao JF, et al. Evaluation of the changes of immune cells during lipopolysaccharide-induced mastitis in rats. Cytokine. 2007;40(2):135–43.

    Article  PubMed  CAS  Google Scholar 

  32. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725–34.

    Article  PubMed  CAS  Google Scholar 

  33. Godowski PJ. A smooth operator for LPS responses. Nat Immunol. 2005;6(6):544–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 30972225, 30771596) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20110061130010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengtao Yang.

Additional information

Responsible Editor: Graham Wallace.

D. Li and Y. Fu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Fu, Y., Zhang, W. et al. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm. Res. 62, 9–15 (2013). https://doi.org/10.1007/s00011-012-0545-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0545-4

Keywords

Navigation