Skip to main content
Log in

Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl–CoA by brain microsomal long-chain fatty acyl–CoA synthetases: relevance to bipolar disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Several drugs used to treat bipolar disorder (lithium and carbamazepine), when administered chronically to rats, reduce the turnover of arachidonic acid, but not docosahexaenoic acid, in brain phospholipids by decreasing the activity of an arachidonic acid-selective phospholipase A2. Although chronic valproic acid produces similar effects on brain arachidonic acid and docosahexaenoic acid turnover, it does not alter phospholipase A2 activity, suggesting that it targets a different enzyme in the turnover pathway.

Materials and methods/Results

By isolating rat brain microsomal long-chain fatty acyl–CoA synthetases (Acsl), we show in vitro that valproic acid is a non-competitive inhibitor of Acsl, as it reduces the maximal velocity of the reaction without changing the affinity of the substrate for the enzyme. While valproic acid inhibited the synthesis of arachidonoyl–CoA, palmitoyl–CoA, and docosahexaenoyl–CoA, the K i for inhibition of arachidonoyl–CoA synthesis (14.1 mM) was approximately one fifth the K i for inhibiting palmitoyl–CoA (85.4 mM) and docosahexaenoyl–CoA (78.2 mM) synthesis. As chronic administration of valproic acid in bipolar disorder achieves whole-brain levels of 1.0 to 1.5 mM, inhibition of arachidonoyl–CoA formation can occur at brain concentrations that are therapeutically relevant to this disease. Furthermore, brain microsomal Acsl did not produce valproyl–CoA.

Conclusions

This study shows that valproic acid acts as a non-competitive inhibitor of brain microsomal Acsl, and that inhibition is substrate-selective. The study supports the hypothesis that valproic acid acts in bipolar disorder by reducing the brain arachidonic acid cascade, by inhibiting arachidonoyl–CoA formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott FS, Acheampong AA (1988) Quantitative structure–anticonvulsant activity relationships of valproic acid, related carboxylic acids and tetrazoles. Neuropharmacology 27:287–294

    Article  PubMed  CAS  Google Scholar 

  • Aly MI, Abdel-Latif AA (1980) Studies on distribution and metabolism of valproate in rat brain, liver, and kidney. Neurochem Res 5:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Bazinet R, Weis MT, Rapoport SI, Rosenberger TA (2005a) Valproic acid inhibits brain microsomal long chain fatty acyl–CoA synthetases at therapeutically relevant concentrations. Exp Biol, p 3672 (Abstract)

  • Bazinet RP, Rao J, Chang L, Rapoport SI, Lee HJ (2005b) Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry (in press)

  • Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2005c) Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 182:180–185

    Article  CAS  Google Scholar 

  • Becker CM, Harris RA (1983) Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys 223:381–392

    Article  PubMed  CAS  Google Scholar 

  • Bolanos JP, Medina JM (1997) Effect of valproate on the metabolism of the central nervous system. Life Sci 60:1933–1942

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI (2003) Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 85:690–696

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calabrese JR, Bowden C, Woyshville MJ (1995) Lithium and the anticonvulsants in the treatment of bipolar disorder. In: Kupfer D (ed) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 1099–1111

    Google Scholar 

  • Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E (1999) Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 24:399–406

    Article  PubMed  CAS  Google Scholar 

  • Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803

    Article  PubMed  CAS  Google Scholar 

  • Cullingford TE, Dolphin CT, Sato H (2002) The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain. Neuropharmacology 42:724–730

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J, Rapoport SI, Rosenberger TA (2003) Valproyl–CoA and esterified valproate are not found in brains of rats treated with valproic acid, but the brain concentrations of CoA and acetyl–CoA are altered. Neurochem Res 28:861–866

    Article  PubMed  CAS  Google Scholar 

  • Fowler DW, Eadie MJ, Dickinson RG (1989) Transplacental transfer and biotransformation studies of valproic acid and its glucuronide(s) in the perfused human placenta. J Pharmacol Exp Ther 249:318–323

    PubMed  CAS  Google Scholar 

  • Friel P (1990) Valproyl CoA: an active metabolite of valproate? Med Hypotheses 31:31–32

    Article  PubMed  CAS  Google Scholar 

  • Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F (2004) Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 56:248–254

    Article  PubMed  CAS  Google Scholar 

  • Green P, Gispan-Herman I, Yadid G (2005) Increased arachidonic acid concentration in the brain of Flinders Sensitive Line rats, an animal model of depression. J Lipid Res (in press)

  • Harris WE, Stahl WL (1983) Incorporation of cis-parinaric acid, a fluorescent fatty acid, into synaptosomal phospholipids by an acyl–CoA acyltransferase. Biochim Biophys Acta 736:79–91

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen FM (1993) Low-dose valproate: a new treatment for cyclothymia, mild rapid cycling disorders, and premenstrual syndrome. J Clin Psychiatry 54:229–234

    PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentary. Neurochem Int 37:103–110

    Article  PubMed  CAS  Google Scholar 

  • Lands WEM, Crawford GC (1975) Enzymes of membrane phospholipid metabolism. In: Martonosi A (ed) Enzymes of biological membranes, Plenum, New York, pp 3–85

    Google Scholar 

  • Laposata M, Reich EL, Majerus PW (1985) Arachidonoyl–CoA synthetase. Separation from nonspecific acyl–CoA synthetase and distribution in various cells and tissues. J Biol Chem 260:11016–11020

    PubMed  CAS  Google Scholar 

  • Lee H, Rao J, Chang L, Rapoport S, Bazinet R (2004) The effects of chronic carbamazepine, an antibipolar disorder drug, on the turnover of arachidonic and docosahexaenoic acids in brain phospholipids of the awake rat. The Society for Neuroscience, San Diego, CA

    Google Scholar 

  • Loscher W (1985) Valproic acid. In: Frey HH, Janz D (eds) Antiepileptic drugs. Handbook of experimental pharmacology, vol 74. Springer, Berlin Heidelberg New York, pp 507–537

    Google Scholar 

  • Loscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18:485–502

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Fisher JE, Nau H, Honack D (1989) Valproic acid in amygdala-kindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 250:1067–1078

    PubMed  CAS  Google Scholar 

  • Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P, DiRusso CC, Farber SA, Guo W, Hashimoto N, Khodiyar V, Kuypers FA, Maltais LJ, Nebert DW, Renieri A, Schaffer JE, Stahl A, Watkins PA, Vasiliou V, Yamamoto TT (2004) Revised nomenclature for the mammalian long-chain acyl–CoA synthetase gene family. J Lipid Res 45:1958–1961

    Article  PubMed  CAS  Google Scholar 

  • Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) Pharmacodynamic properties of N-dipropylacetic acid. Therapie 18:435–438

    PubMed  CAS  Google Scholar 

  • Pope HG Jr, McElroy SL, Keck PE Jr, Hudson JI (1991) Valproate in the treatment of acute mania. A placebo-controlled study. Arch Gen Psychiatry 48:2–8

    Google Scholar 

  • Rapoport SI, Chang MC, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42:678–685

    PubMed  CAS  Google Scholar 

  • Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport SI, Chang MC (1999) 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 10:3887–3890

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214

    Article  PubMed  CAS  Google Scholar 

  • Saunders C, Voigt JM, Weis MT (1996) Evidence for a single non-arachidonic acid-specific fatty acyl–CoA synthetase in heart which is regulated by Mg2+. Biochem J 313 (Pt 3):849–853

    PubMed  CAS  Google Scholar 

  • Segel IR (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  • Setnik B, Nobrega JN (2004) Long-chain acyl–CoenzymeA synthetase-2 mRNA: increased cerebral cortex expression in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 28:577–582

    Article  PubMed  CAS  Google Scholar 

  • Siafaka-Kapadai A, Patiris M, Bowden C, Javors M (1998) Incorporation of [3H]valproic acid into lipids in GT1-7 neurons. Biochem Pharmacol 56:207–212

    Article  PubMed  CAS  Google Scholar 

  • Silva MF, Ruiter JP, IJlst L, Allers P, ten Brink HJ, Jakobs C, Duran M, Tavares de Almeida I, Wanders RJ (2001) Synthesis and intramitochondrial levels of valproyl–coenzyme A metabolites. Anal Biochem 290:60–67

    Article  PubMed  CAS  Google Scholar 

  • Uberti MA, Pierce J, Weis MT (2003) Molecular characterization of a rabbit long-chain fatty acyl CoA synthetase that is highly expressed in the vascular endothelium. Biochim Biophys Acta 1645:193–204

    PubMed  CAS  Google Scholar 

  • Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, Coleman RA (2005) Characterization of recombinant long-chain rat acyl–CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Watkins PA (1997) Fatty acid activation. Prog Lipid Res 36:55–83

    Article  PubMed  CAS  Google Scholar 

  • Weis MT, Bercute A (1997) Comparison of long-chain fatty acyl–CoA synthetases from rabbit heart and liver: substrate preferences and effects of Mg2+. Biochem J 322(Pt 2):649–654

    PubMed  CAS  Google Scholar 

  • Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB, Prescott SM, Majerus PW (1982) Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem 257:3510–3515

    PubMed  CAS  Google Scholar 

  • Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem (Tokyo) 122:1–16

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thad A. Rosenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazinet, R.P., Weis, M.T., Rapoport, S.I. et al. Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl–CoA by brain microsomal long-chain fatty acyl–CoA synthetases: relevance to bipolar disorder. Psychopharmacology 184, 122–129 (2006). https://doi.org/10.1007/s00213-005-0272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0272-4

Keywords

Navigation